提问者:小点点

从BigQuery到Cloud Bigtable的Google Cloud Dataflow管道中的异常


执行DataFlow管道,每隔一段时间我们就会看到那些异常。我们可以对它们做些什么吗?我们有一个非常简单的流程,它从BigQuery查询中读取数据并在BigTable中填充数据。

此外,管道内的数据会发生什么?是重新处理?还是在传输到BigTable的过程中丢失?

 CloudBigtableIO.initializeForWrite(p);
     p.apply(BigQueryIO.Read.fromQuery(getQuery()))
     .apply(ParDo.of(new DoFn<TableRow, Mutation>() {
           public void processElement(ProcessContext c) {
             Mutation output = convertDataToRow(c.element());
             c.output(output);
           }

           }))
         .apply(CloudBigtableIO.writeToTable(config));


private static Mutation convertDataToRow(TableRow element) {
     LOG.info("element: "+ element);
     LOG.info("BASM_segment_id: "+ element.get("BASM_segment_id"));
     if(element.get("BASM_AID") != null){
         Put obj = new Put(getRowKey(element).getBytes()).addColumn(SEGMENT_FAMILY, SEGMENT_COLUMN_NAME, ((String)element.get("BAS_category")).getBytes() );
                obj.addColumn(USER_FAMILY, "AID".getBytes(), ((String)element.get("BASM_AID")).getBytes());
         if(element.get("BASM_segment_id") != null){
                obj.addColumn(SEGMENT_FAMILY, "segment_id".getBytes(), ((String)element.get("BASM_segment_id")).getBytes());
         }
         if(element.get("BAS_sub_category") != null){
                obj.addColumn(SEGMENT_FAMILY, "sub_category".getBytes(), ((String)element.get("BAS_sub_category")).getBytes());
         }
         if(element.get("BAS_name") != null){
                obj.addColumn(SEGMENT_FAMILY, "name".getBytes(), ((String)element.get("BAS_name")).getBytes());
         }
         if(element.get("BAS_description") != null){
                obj.addColumn(SEGMENT_FAMILY, "description".getBytes(), ((String)element.get("BAS_description")).getBytes());
         }
         if(element.get("BAS_last_compute_day") != null){obj.addColumn(USER_FAMILY, "Krux_User_id".getBytes(), ((String)element.get("BASM_krux_user_id")).getBytes());
                obj.addColumn(SEGMENT_FAMILY, "last_compute_day".getBytes(), ((String)element.get("BAS_last_compute_day")).getBytes());
         }
         if(element.get("BAS_type") != null){
                obj.addColumn(SEGMENT_FAMILY, "type".getBytes(), ((String)element.get("BAS_type")).getBytes());
         }      
         if(element.get("BASM_REGID") != null){
                obj.addColumn(USER_FAMILY, "REGID".getBytes(), ((String)element.get("BASM_REGID")).getBytes() );
         }
        return obj;
     }else{
         return null;
     }
    }

以下是我们得到的例外:

引起的:

org. apache.hadoop.hbase.client.RetriesExhaustedWellDetailsException:失败1 action:StatusRuntimeException:1 time,atcom.google.cloud.bigtable.hbase.BigtableBufferedMutator.handleExceptions(BigtableBufferedMutator.java:389)atcom.google.cloud.bigtable.hbase.BigtableBufferedMutator.mutate(BigtableBufferedMutator.java:274)atcom.google.cloud.bigtable.datflow.CloudBigtableIO$CloudBigtableSingleTableBufferedWriteFn.process Element(CloudBigtablIO.java:966)

从数据流控制台复制的异常

(7e75740160102c05): java.lang.RuntimeException: com.google.cloud.dataflow.sdk.util.UserCodeException: org.apache.hadoop.hbase.client.RetriesExhaustedWithDetailsException: Failed 1 action: StatusRuntimeException: 1 time, at com.google.cloud.dataflow.sdk.runners.worker.SimpleParDoFn$1.output(SimpleParDoFn.java:162) at com.google.cloud.dataflow.sdk.util.DoFnRunnerBase$DoFnContext.outputWindowedValue(DoFnRunnerBase.java:287) at com.google.cloud.dataflow.sdk.util.DoFnRunnerBase$DoFnProcessContext.output(DoFnRunnerBase.java:449) at com.nytimes.adtech.dataflow.pipelines.BigTableSegmentData$2.processElement(BigTableSegmentData.java:70) Caused by: com.google.cloud.dataflow.sdk.util.UserCodeException: org.apache.hadoop.hbase.client.RetriesExhaustedWithDetailsException: Failed 1 action: StatusRuntimeException: 1 time, at com.google.cloud.dataflow.sdk.util.UserCodeException.wrap(UserCodeException.java:35) at com.google.cloud.dataflow.sdk.util.UserCodeException.wrapIf(UserCodeException.java:40) at com.google.cloud.dataflow.sdk.util.DoFnRunnerBase.wrapUserCodeException(DoFnRunnerBase.java:368) at com.google.cloud.dataflow.sdk.util.SimpleDoFnRunner.invokeProcessElement(SimpleDoFnRunner.java:51) at com.google.cloud.dataflow.sdk.util.DoFnRunnerBase.processElement(DoFnRunnerBase.java:138) at com.google.cloud.dataflow.sdk.runners.worker.SimpleParDoFn.processElement(SimpleParDoFn.java:190) at com.google.cloud.dataflow.sdk.runners.worker.ForwardingParDoFn.processElement(ForwardingParDoFn.java:42) at com.google.cloud.dataflow.sdk.runners.worker.DataflowWorkerLoggingParDoFn.processElement(DataflowWorkerLoggingParDoFn.java:47) at com.google.cloud.dataflow.sdk.util.common.worker.ParDoOperation.process(ParDoOperation.java:53) at com.google.cloud.dataflow.sdk.util.common.worker.OutputReceiver.process(OutputReceiver.java:52) at com.google.cloud.dataflow.sdk.runners.worker.SimpleParDoFn$1.output(SimpleParDoFn.java:160) at com.google.cloud.dataflow.sdk.util.DoFnRunnerBase$DoFnContext.outputWindowedValue(DoFnRunnerBase.java:287) at com.google.cloud.dataflow.sdk.util.DoFnRunnerBase$DoFnProcessContext.output(DoFnRunnerBase.java:449) at com.nytimes.adtech.dataflow.pipelines.BigTableSegmentData$2.processElement(BigTableSegmentData.java:70) at com.google.cloud.dataflow.sdk.util.SimpleDoFnRunner.invokeProcessElement(SimpleDoFnRunner.java:49) at com.google.cloud.dataflow.sdk.util.DoFnRunnerBase.processElement(DoFnRunnerBase.java:138) at com.google.cloud.dataflow.sdk.runners.worker.SimpleParDoFn.processElement(SimpleParDoFn.java:190) at com.google.cloud.dataflow.sdk.runners.worker.ForwardingParDoFn.processElement(ForwardingParDoFn.java:42) at com.google.cloud.dataflow.sdk.runners.worker.DataflowWorkerLoggingParDoFn.processElement(DataflowWorkerLoggingParDoFn.java:47) at com.google.cloud.dataflow.sdk.util.common.worker.ParDoOperation.process(ParDoOperation.java:53) at com.google.cloud.dataflow.sdk.util.common.worker.OutputReceiver.process(OutputReceiver.java:52) at com.google.cloud.dataflow.sdk.util.common.worker.ReadOperation.runReadLoop(ReadOperation.java:226) at com.google.cloud.dataflow.sdk.util.common.worker.ReadOperation.start(ReadOperation.java:167) at com.google.cloud.dataflow.sdk.util.common.worker.MapTaskExecutor.execute(MapTaskExecutor.java:71) at com.google.cloud.dataflow.sdk.runners.worker.DataflowWorker.executeWork(DataflowWorker.java:288) at com.google.cloud.dataflow.sdk.runners.worker.DataflowWorker.doWork(DataflowWorker.java:221) at com.google.cloud.dataflow.sdk.runners.worker.DataflowWorker.getAndPerformWork(DataflowWorker.java:173) at com.google.cloud.dataflow.sdk.runners.worker.DataflowWorkerHarness$WorkerThread.doWork(DataflowWorkerHarness.java:193) at com.google.cloud.dataflow.sdk.runners.worker.DataflowWorkerHarness$WorkerThread.call(DataflowWorkerHarness.java:173) at com.google.cloud.dataflow.sdk.runners.worker.DataflowWorkerHarness$WorkerThread.call(DataflowWorkerHarness.java:160) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Caused by: org.apache.hadoop.hbase.client.RetriesExhaustedWithDetailsException: Failed 1 action: StatusRuntimeException: 1 time, at com.google.cloud.bigtable.hbase.BigtableBufferedMutator.handleExceptions(BigtableBufferedMutator.java:389) at com.google.cloud.bigtable.hbase.BigtableBufferedMutator.mutate(BigtableBufferedMutator.java:274) at com.google.cloud.bigtable.dataflow.CloudBigtableIO$CloudBigtableSingleTableBufferedWriteFn.processElement(CloudBigtableIO.java:966)

提前感谢


共1个答案

匿名用户

我们线下进行了讨论。这里的问题是,与集群中Cloud Bigtable节点的数量相比,您的Dataflow工作人员过多。您需要通过减少Dataflow工作人员或联系我们的团队来增加Cloud Bigtable资源来改变这一比例。

与您拥有的Cloud Bigtable节点数量相比,Bigtable的性能令人钦佩,但来自Dataflow的负载太高而无法可靠处理。

您可以在Google Cloud控制台中的“CPU使用情况”图表中查看您的使用情况。任何超过您容量80%的内容都可能导致问题。如果您获得更多Bigtable Quota,您可以在运行Dataflow作业之前增加您的节点数,并在作业完成后减少它。例如,Scio会这样做。

==

关于“管道内的数据也会发生什么?它是重新处理的吗?还是在传输到BigTable的过程中丢失了?”:

Dataflow尝试再次将数据发送到BigTable。在这些情况下,Dataflow的重试机制将针对临时问题进行纠正。

不幸的是,当问题被证明是Cloud Bigtable过载时,重试会通过向Bigtable发送更多流量来加剧问题,从而加剧问题。