我正在尝试在VertexAI(Google Cloud Platform)中使用kubeflow管道(kfp)组件开发自定义管道。管道的步骤是:
DataFrame
DataFrame
训练K-Means模型这是第2步的代码。我不得不使用Output[Artiect]
作为输出,因为我在这里找到的pd. DataFrame
类型不起作用。
@component(base_image="python:3.9", packages_to_install=["google-cloud-bigquery","pandas","pyarrow"])
def create_dataframe(
project: str,
region: str,
destination_dataset: str,
destination_table_name: str,
df: Output[Artifact],
):
from google.cloud import bigquery
client = bigquery.Client(project=project, location=region)
dataset_ref = bigquery.DatasetReference(project, destination_dataset)
table_ref = dataset_ref.table(destination_table_name)
table = client.get_table(table_ref)
df = client.list_rows(table).to_dataframe()
这里是第3步的代码:
@component(base_image="python:3.9", packages_to_install=['sklearn'])
def kmeans_training(
dataset: Input[Artifact],
model: Output[Model],
num_clusters: int,
):
from sklearn.cluster import KMeans
model = KMeans(num_clusters, random_state=220417)
model.fit(dataset)
由于以下错误,管道的运行停止:
TypeError: float() argument must be a string or a number, not 'Artifact'
是否可以将神器转换为numpy数组
或Dataframe
?
我使用以下代码找到了解决方案。现在我可以使用步骤2的输出在步骤3中训练模型。
第二步:
@component(base_image="python:3.9", packages_to_install=["google-cloud-bigquery","pandas","pyarrow"])
def create_dataframe(
project: str,
region: str,
destination_dataset: str,
destination_table_name: str,
df: Output[Dataset],
):
from google.cloud import bigquery
client = bigquery.Client(project=project, location=region)
dataset_ref = bigquery.DatasetReference(project, destination_dataset)
table_ref = dataset_ref.table(destination_table_name)
table = client.get_table(table_ref)
train = client.list_rows(table).to_dataframe()
train.to_csv(df.path)
第三步:
@component(base_image="python:3.9", packages_to_install=['sklearn','pandas','joblib'])
def kmeans_training(
dataset: Input[Dataset],
model_artifact: Output[Model],
num_clusters: int,
):
from sklearn.cluster import KMeans
import pandas as pd
from joblib import dump
data = pd.read_csv(dataset.path)
model = KMeans(num_clusters, random_state=220417)
model.fit(data)
dump(model, model_artifact.path)