提问者:小点点

Keras在训练分类LSTM序列到序列模型时给出nan


我正在尝试编写一个Keras模型(使用Tensorflow后端),它使用LSTM来预测序列的标签,就像在词性标记任务中一样。我编写的模型返回nan作为所有训练时期和所有标签预测的损失。我怀疑我的模型配置错误,但我不知道我做错了什么。

完整的程序在这里。

from random import shuffle, sample
from typing import Tuple, Callable

from numpy import arange, zeros, array, argmax, newaxis


def sequence_to_sequence_model(time_steps: int, labels: int, units: int = 16):
    from keras import Sequential
    from keras.layers import LSTM, TimeDistributed, Dense

    model = Sequential()
    model.add(LSTM(units=units, input_shape=(time_steps, 1), return_sequences=True))
    model.add(TimeDistributed(Dense(labels)))
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    return model


def labeled_sequences(n: int, sequence_sampler: Callable[[], Tuple[array, array]]) -> Tuple[array, array]:
    """
    Create training data for a sequence-to-sequence labeling model.

    The features are an array of size samples * time steps * 1.
    The labels are a one-hot encoding of time step labels of size samples * time steps * number of labels.

    :param n: number of sequence pairs to generate
    :param sequence_sampler: a function that returns two numeric sequences of equal length
    :return: feature and label sequences
    """
    from keras.utils import to_categorical

    xs, ys = sequence_sampler()
    assert len(xs) == len(ys)
    x = zeros((n, len(xs)), int)
    y = zeros((n, len(ys)), int)
    for i in range(n):
        xs, ys = sequence_sampler()
        x[i] = xs
        y[i] = ys
    x = x[:, :, newaxis]
    y = to_categorical(y)
    return x, y


def digits_with_repetition_labels() -> Tuple[array, array]:
    """
    Return a random list of 10 digits from 0 to 9. Two of the digits will be repeated. The rest will be unique.
    Along with this list, return a list of 10 labels, where the label is 0 if the corresponding digits is unique and 1
    if it is repeated.

    :return: digits and labels
    """
    n = 10
    xs = arange(n)
    ys = zeros(n, int)
    shuffle(xs)
    i, j = sample(range(n), 2)
    xs[j] = xs[i]
    ys[i] = ys[j] = 1
    return xs, ys


def main():
    # Train
    x, y = labeled_sequences(1000, digits_with_repetition_labels)
    model = sequence_to_sequence_model(x.shape[1], y.shape[2])
    model.summary()
    model.fit(x, y, epochs=20, verbose=2)
    # Test
    x, y = labeled_sequences(5, digits_with_repetition_labels)
    y_ = model.predict(x, verbose=0)
    x = x[:, :, 0]
    for i in range(x.shape[0]):
        print(' '.join(str(n) for n in x[i]))
        print(' '.join([' ', '*'][int(argmax(n))] for n in y[i]))
        print(y_[i])


if __name__ == '__main__':
    main()

我的特征序列是从0到9的10个数字的数组。我对应的标签序列是10个零和1的数组,其中零表示一个唯一的数字,一个表示一个重复的数字。(这个想法是创建一个包含长距离依赖关系的简单分类任务。)

训练看起来像这样

Epoch 1/20
 - 1s - loss: nan
Epoch 2/20
 - 0s - loss: nan
Epoch 3/20
 - 0s - loss: nan

所有的标签数组预测都像这样

[[nan nan]
 [nan nan]
 [nan nan]
 [nan nan]
 [nan nan]
 [nan nan]
 [nan nan]
 [nan nan]
 [nan nan]
 [nan nan]]

所以很明显有些不对劲。

传递给model.fit的特征矩阵是维度样本×时间步长×1。标签矩阵是维度样本×时间步长×2,其中2来自标签0和1的一热编码。

我正在使用时间分布的密集层来预测序列,遵循Keras留档和这样和这样的帖子。据我所知,上面sequence_to_sequence_model中定义的模型拓扑是正确的。模型摘要如下所示

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
lstm_1 (LSTM)                (None, 10, 16)            1152      
_________________________________________________________________
time_distributed_1 (TimeDist (None, 10, 2)             34        
=================================================================
Total params: 1,186
Trainable params: 1,186
Non-trainable params: 0
_________________________________________________________________

像这样的堆栈溢出问题听起来像nan结果是数字问题的指标:失控的梯度等等。然而,由于我正在处理一个微小的集合数据,并且从我的模型返回的每个数字都是nan,我怀疑我没有看到数字问题,而是我如何构建模型的问题。

上面的代码是否具有正确的序列到序列学习的模型/数据形状?如果是这样,为什么我到处都是nans?


共3个答案

匿名用户

默认情况下,密集层没有激活。如果您指定一个,nan就会消失。更改上面代码中的以下行。

model.add(TimeDistributed(Dense(labels, activation='softmax')))

匿名用户

如果模型权重和损失很快变成NaN,这是梯度爆炸的指标。我会在LSTM层之后添加批量归一化并检查它是否有帮助。

from keras.layers.normalization import BatchNormalization

# [...]
model.add(LSTM(units=units, input_shape=(time_steps, 1), return_sequences=True))
model.add(BatchNormalization())

对我来说(关于分类问题)批量归一化解决了这个问题。

匿名用户

首先,在训练前检查预测。如果模型已经为您提供了NaN,那么您的数据中也可能存在问题:

  • 检查dtype,尝试双精度(即tf. float64)。
  • 确保您的数据是可靠的。

否则,您可以:

  • LSTM后添加层规范化
  • 尝试不同的内核初始化程序,和/或使用方差较小的内核初始化程序。
  • 较低的学习率(亚当的默认值为0.001)。
  • 梯度裁剪:当你编译模型时,做model. compile(…,优化器=Adam(clip规范=1.0))。指定1的全局范数通常是一个很好的默认值。
  • 更改优化器的epsilon值。
  • 更改优化器,就像SGD这样简单的东西。
  • 尝试定义或编辑损失函数,可能默认的categorical_crossentropy不能很好地处理3D张量。