我有一个日志条目表,以及大约 100 个可能的日志代码的描述表:
CREATE TABLE `log_entries` (
`logentry_id` int(11) NOT NULL AUTO_INCREMENT,
`date` datetime NOT NULL,
`partner_id` smallint(4) NOT NULL,
`log_code` smallint(4) NOT NULL,
PRIMARY KEY (`logentry_id`),
KEY `IX_code` (`log_code`),
KEY `IX_partner_code` (`partner_id`,`log_code`)
) ENGINE=MyISAM ;
CREATE TABLE IF NOT EXISTS `log_codes` (
`log_code` smallint(4) NOT NULL DEFAULT '0',
`log_desc` varchar(255) DEFAULT NULL,
`category_overview` tinyint(1) NOT NULL DEFAULT '0',
`category_error` tinyint(1) NOT NULL DEFAULT '0',
PRIMARY KEY (`log_code`),
KEY `IX_overview_code` (`category_overview`,`log_code`),
KEY `IX_error_code` (`category_error`,`log_code`)
) ENGINE=MyISAM ;
以下查询(匹配20k行中的10k行)在0.0034秒内执行(使用< code>LIMIT 0,20):
SELECT log_entries.date, log_codes.log_desc FROM log_entries
INNER JOIN log_codes ON log_codes.log_code = log_entries.log_code
WHERE log_entries.partner_id = 1 AND log_codes.category_overview = 1;
但是当添加< code > ORDER BY log _ entries . log entry _ id desc (这当然是必要的)时,它变慢到0.6秒。大概是因为log_codes表上用了“使用临时”?删除索引实际上会使查询执行得更快,但仍然很慢(0.3秒)。
解释没有ORDER BY的查询输出:
+----+-------------+-------------+------+----------------------------+------------------+---------+--------------------------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------------+------+----------------------------+------------------+---------+--------------------------+------+-------------+ | 1 | SIMPLE | log_codes | ref | PRIMARY,IX_overview_code | IX_overview_code | 1 | const | 56 | | | 1 | SIMPLE | log_entries | ref | IX_code,IX_partner_code | IX_partner_code | 7 | const,log_codes.log_code | 25 | Using where | +----+-------------+-------------+------+----------------------------+------------------+---------+--------------------------+------+-------------+
包括订单方:
+----+-------------+-------------+------+----------------------------+------------------+---------+--------------------------+------+---------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------------+------+----------------------------+------------------+---------+--------------------------+------+---------------------------------+ | 1 | SIMPLE | log_codes | ref | PRIMARY,IX_overview_code | IX_overview_code | 1 | const | 56 | Using temporary; Using filesort | | 1 | SIMPLE | log_entries | ref | IX_code,IX_partner_code | IX_partner_code | 7 | const,log_codes.log_code | 25 | Using where | +----+-------------+-------------+------+----------------------------+------------------+---------+--------------------------+------+---------------------------------+
关于如何让此查询执行得更快的任何提示?我不明白为什么需要“使用临时”,因为应该在获取和排序适当的日志条目之前选择日志代码?
更新@Eugen Rieck:
SELECT log_entries.date, lc.log_desc FROM log_entries INNER JOIN (SELECT log_desc, log_code FROM log_codes WHERE category_overview = 1) AS lc ON lc.log_code = log_entries.log_code WHERE log_entries.partner_id = 1 ORDER BY log_entries.logentry_id; +----+-------------+-------------+------+-------------------------+------------------+---------+-------------------+------+---------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------------+------+-------------------------+------------------+---------+-------------------+------+---------------------------------+ | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 57 | Using temporary; Using filesort | | 1 | PRIMARY | log_entries | ref | IX_code,IX_partner_code | IX_partner_code | 7 | const,lc.log_code | 25 | Using where | | 2 | DERIVED | log_codes | ref | IX_overview_code | IX_overview_code | 1 | | 56 | | +----+-------------+-------------+------+-------------------------+------------------+---------+-------------------+------+---------------------------------+
更新@RolandoMySQLDBA:
用我的原始索引,按日期排序DESC:
SELECT log_entries.date, log_codes.log_desc FROM (SELECT log_code,date FROM log_entries WHERE partner_id = 1) log_entries INNER JOIN (SELECT log_code,log_desc FROM log_codes WHERE category_overview = 1) log_codes USING (log_code) ORDER BY log_entries.date DESC; +----+-------------+-------------+------+------------------+------------------+---------+------+-------+---------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------------+------+------------------+------------------+---------+------+-------+---------------------------------+ | 1 | PRIMARY | <derived3> | ALL | NULL | NULL | NULL | NULL | 57 | Using temporary; Using filesort | | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 21937 | Using where; Using join buffer | | 3 | DERIVED | log_codes | ref | IX_overview_code | IX_overview_code | 1 | | 56 | | | 2 | DERIVED | log_entries | ALL | IX_partner_code | NULL | NULL | NULL | 22787 | Using where | +----+-------------+-------------+------+------------------+------------------+---------+------+-------+---------------------------------+
使用您的索引,无需排序:
SELECT log_entries.date, log_codes.log_desc FROM (SELECT log_code,date FROM log_entries WHERE partner_id = 1) log_entries INNER JOIN (SELECT log_code,log_desc FROM log_codes WHERE category_overview = 1) log_codes USING (log_code); +----+-------------+-------------+-------+-----------------------+-----------------------+---------+------+-------+--------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------------+-------+-----------------------+-----------------------+---------+------+-------+--------------------------------+ | 1 | PRIMARY | <derived3> | ALL | NULL | NULL | NULL | NULL | 57 | | | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 21937 | Using where; Using join buffer | | 3 | DERIVED | log_codes | index | IX_overview_code_desc | IX_overview_code_desc | 771 | NULL | 80 | Using where; Using index | | 2 | DERIVED | log_entries | index | IX_partner_code_date | IX_partner_code_date | 15 | NULL | 22787 | Using where; Using index | +----+-------------+-------------+-------+-----------------------+-----------------------+---------+------+-------+--------------------------------+
使用您的索引,按日期排序:
SELECT log_entries.date, log_codes.log_desc FROM (SELECT log_code,date FROM log_entries WHERE partner_id = 1) log_entries INNER JOIN (SELECT log_code,log_desc FROM log_codes WHERE category_overview = 1) log_codes USING (log_code) ORDER BY log_entries.date DESC; +----+-------------+-------------+-------+-----------------------+-----------------------+---------+------+-------+---------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------------+-------+-----------------------+-----------------------+---------+------+-------+---------------------------------+ | 1 | PRIMARY | <derived3> | ALL | NULL | NULL | NULL | NULL | 57 | Using temporary; Using filesort | | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 21937 | Using where; Using join buffer | | 3 | DERIVED | log_codes | index | IX_overview_code_desc | IX_overview_code_desc | 771 | NULL | 80 | Using where; Using index | | 2 | DERIVED | log_entries | index | IX_partner_code_date | IX_partner_code_date | 15 | NULL | 22787 | Using where; Using index | +----+-------------+-------------+-------+-----------------------+-----------------------+---------+------+-------+---------------------------------+
斯特凡内利@Joe更新:
SELECT log_entries.date, log_codes.log_desc FROM log_entries INNER JOIN log_codes ON log_codes.log_code = log_entries.log_code WHERE log_entries.partner_id = 1 AND log_codes.category_overview = 1 ORDER BY date DESC; +----+-------------+-------------+------+--------------------------+-----------------+---------+--------------------------+------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------------+------+--------------------------+-----------------+---------+--------------------------+------+----------------------------------------------+ | 1 | SIMPLE | log_codes | ALL | PRIMARY,IX_code_overview | NULL | NULL | NULL | 80 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | log_entries | ref | IX_code,IX_code_partner | IX_code_partner | 7 | log_codes.log_code,const | 25 | Using where | +----+-------------+-------------+------+--------------------------+-----------------+---------+--------------------------+------+----------------------------------------------+
我认为,这里和类似问题中的大多数问题都来自于对MySQL(和其他数据库)如何使用索引进行排序的误解。答案是:MySQL不使用索引进行排序,它只是可以按照索引的顺序或相反的方向读取数据。如果你碰巧希望数据按照当前使用的索引的顺序排序——你很幸运,否则结果将被排序(因此解释中的文件排序)
这是整个结果的顺序,主要取决于连接中的第一个表。如果你查看你的解释,你会看到连接从“log_codes”表开始(因为它要小得多)。
基本上,你需要的是一个“日志条目”的复合索引(partner_id,date),一个“日志代码”的覆盖复合索引(log_code,category_overview,log_desc),将“内部连接”更改为“直接连接”以强制连接顺序,并按“日期”desc排序(幸运的是,该索引也将覆盖)。
UPD1:很抱歉,我错误地输入了第一个表的索引:它应该是(partner_id,log_code,日期)。
但是当我尝试对另一个表中的列进行排序时,我仍然难以理解为什么MySQL选择在log_codes表(和100倍查询时间)上“使用临时”?
MySQL可以直接输出数据,只要你同意它获取数据的顺序,或者把数据放在一个临时表中,然后应用排序和输出。当你从连接中的任何非第一个表中按字段排序时,MySQL必须对数据进行排序(不仅仅是按照索引的顺序输出),为了对数据进行排序,它需要一个临时表。
但是当我进一步进入数据集时,它会变慢(LIMIT 50000,25为6秒)。你知道为什么吗?
要输出第50000行,MySQL无论如何都需要获取前50000行并跳过它们。由于我错过了索引中的一列,MySQL不仅扫描了索引,而且还为每个项目进行了额外的磁盘查找,查找<code>log_code</code>值。由于所有数据都可以从索引中提取,因此覆盖索引应该快得多。
UPD2:尝试强制索引:
SELECT log_entries.date, log_codes.log_desc
FROM log_entries FORCE INDEX (IX_partner_code_date)
STRAIGHT_JOIN log_codes
ON log_codes.log_code = log_entries.log_code
WHERE log_entries.partner_id = 1
AND log_codes.category_overview = 1
ORDER BY log_entries.date DESC;
你需要两样东西
SELECT log_entries.date, log_codes.log_desc FROM
(SELECT log_code,date FROM log_entries WHERE partner_id = 1) log_entries
INNER JOIN
(SELECT log_code,log_desc FROM log_codes WHERE category_overview = 1) log_codes
USING (log_code);
在创建这些索引之前,运行这些
SELECT COUNT(1) rowcount,partner_id FROM log_entries GROUP BY partner_id;
SELECT COUNT(1) rowcount,category_overview FROM log_codes GROUP BY category_overview;
如果所有可能的partner_id值的计数都不超过log_entries表的5%,则创建该索引
ALTER TABLE log_entries ADD INDEX (partner_id,log_code,date);
如果所有可能的category_overview值的计数都没有超过log_codes表的5%,请创建此索引
ALTER TABLE log_codes ADD INDEX (category_overview,log_code,log_desc);
试试看!!!
请尝试此重构查询,包括限制 0,25
SELECT log_entries.date, log_codes.log_desc FROM
(
SELECT A.log_code FROM
(SELECT log_code FROM log_entries WHERE partner_id = 1) A INNER JOIN
(SELECT log_code FROM log_codes WHERE category_overview = 1) B USING (log_code)
LIMIT 0,25
) log_code_keys
INNER JOIN log_entries USING (log_code)
INNER JOIN log_code USING (log_code);
我将首先反转IX_partner_code
和IX_overview_code
索引中的列。这应该使它们更适合支持JOIN和WHERE子句。
...
KEY `IX_code_partner` (`log_code`,`partner_id`)
...
KEY `IX_code_overview` (`log_code`,`category_overview`),
...