提问者:小点点

为什么过滤未排序列表比过滤已排序列表快


我一直在玩Java 8,我决定对流进行微基准测试。正如预期的那样,的速度是原来的两倍,但还是出现了其他一些问题--如果我在将数据传递给之前先对其进行排序,则与传递未排序列表相比,Map->Collect/code>得到结果所需的时间要多出5-8倍。

(Stream) Elapsed time [ns] : 53733996 (53 ms)
(ParallelStream) Elapsed time [ns] : 25901907 (25 ms)
(Stream) Elapsed time [ns] : 336976149 (336 ms)
(ParallelStream) Elapsed time [ns] : 204781387 (204 ms)
package com.github.svetlinzarev.playground.javalang.lambda;

import static java.lang.Long.valueOf;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.stream.Collectors;

import com.github.svetlinzarev.playground.util.time.Stopwatch;

public class MyFirstLambda {
    private static final int ELEMENTS = 1024 * 1024 * 16;

    private static List<Integer> getRandom(int nElements) {
        final Random random = new Random();
        final List<Integer> data = new ArrayList<Integer>(nElements);
        for (int i = 0; i < MyFirstLambda.ELEMENTS; i++) {
            data.add(random.nextInt(MyFirstLambda.ELEMENTS));
        }
        return data;
    }

    private static void benchStream(List<Integer> data) {
        final Stopwatch stopwatch = new Stopwatch();
        final List<Long> smallLongs = data.stream()
                .filter(i -> i.intValue() < 16)
                .map(Long::valueOf)
                .collect(Collectors.toList());
        stopwatch.log("Stream");
        System.out.println(smallLongs);
    }

    private static void benchParallelStream(List<Integer> data) {
        final Stopwatch stopwatch = new Stopwatch();
        final List<Long> smallLongs = data.parallelStream()
                .filter(i -> i.intValue() < 16)
                .map(Long::valueOf)
                .collect(Collectors.toList());
        stopwatch.log("ParallelStream");
        System.out.println(smallLongs);
    }

    public static void main(String[] args) {
        final List<Integer> data = MyFirstLambda.getRandom(MyFirstLambda.ELEMENTS);
        // Collections.sort(data, (first, second) -> first.compareTo(second)); //<- Sort the data

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);
    }
}

下面是一个更好的基准测试代码

package com.github.svetlinzarev.playground.javalang.lambda;

import static java.lang.Long.valueOf;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
import java.util.stream.Collectors;

import com.github.svetlinzarev.playground.util.time.Stopwatch;

public class MyFirstLambda {
    private static final int ELEMENTS = 1024 * 1024 * 10;
    private static final int SMALLER_THAN = 16;
    private static final int WARM_UP_ITERRATIONS = 1000;

    private static List<Integer> getRandom(int nElements) {
        final Random random = new Random();
        final List<Integer> data = new ArrayList<Integer>(nElements);
        for (int i = 0; i < MyFirstLambda.ELEMENTS; i++) {
            data.add(random.nextInt(MyFirstLambda.ELEMENTS));
        }
        return data;
    }

    private static List<Long> filterStream(List<Integer> data) {
        final List<Long> smallLongs = data.stream()
                .filter(i -> i.intValue() < MyFirstLambda.SMALLER_THAN)
                .map(Long::valueOf)
                .collect(Collectors.toList());
        return smallLongs;
    }

    private static List<Long> filterParallelStream(List<Integer> data) {
        final List<Long> smallLongs = data.parallelStream()
                .filter(i -> i.intValue() < MyFirstLambda.SMALLER_THAN)
                .map(Long::valueOf)
                .collect(Collectors.toList());
        return smallLongs;
    }

    private static long filterAndCount(List<Integer> data) {
        return data.stream()
                .filter(i -> i.intValue() < MyFirstLambda.SMALLER_THAN)
                .count();
    }

    private static long filterAndCountinParallel(List<Integer> data) {
        return data.parallelStream()
                .filter(i -> i.intValue() < MyFirstLambda.SMALLER_THAN)
                .count();
    }

    private static void warmUp(List<Integer> data) {
        for (int i = 0; i < MyFirstLambda.WARM_UP_ITERRATIONS; i++) {
            MyFirstLambda.filterStream(data);
            MyFirstLambda.filterParallelStream(data);
            MyFirstLambda.filterAndCount(data);
            MyFirstLambda.filterAndCountinParallel(data);
        }
    }

    private static void benchmark(List<Integer> data, String message) throws InterruptedException {
        System.gc();
        Thread.sleep(1000); // Give it enough time to complete the GC cycle

        final Stopwatch stopwatch = new Stopwatch();
        MyFirstLambda.filterStream(data);
        stopwatch.log("Stream: " + message);

        System.gc();
        Thread.sleep(1000); // Give it enough time to complete the GC cycle

        stopwatch.reset();
        MyFirstLambda.filterParallelStream(data);
        stopwatch.log("ParallelStream: " + message);

        System.gc();
        Thread.sleep(1000); // Give it enough time to complete the GC cycle

        stopwatch.reset();
        MyFirstLambda.filterAndCount(data);
        stopwatch.log("Count: " + message);

        System.gc();
        Thread.sleep(1000); // Give it enough time to complete the GC cycle

        stopwatch.reset();
        MyFirstLambda.filterAndCount(data);
        stopwatch.log("Count in parallel: " + message);
    }

    public static void main(String[] args) throws InterruptedException {
        final List<Integer> data = MyFirstLambda.getRandom(MyFirstLambda.ELEMENTS);

        MyFirstLambda.warmUp(data);
        MyFirstLambda.benchmark(data, "UNSORTED");

        Collections.sort(data, (first, second) -> first.compareTo(second));
        MyFirstLambda.benchmark(data, "SORTED");

        Collections.sort(data, (first, second) -> second.compareTo(first));
        MyFirstLambda.benchmark(data, "IN REVERSE ORDER");

    }
}

结果也是相似的:

   16:09:20.470 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Stream: UNSORTED) Elapsed time [ns] : 66812263 (66 ms)
16:09:22.149 [main] INFO  c.g.s.playground.util.time.Stopwatch - (ParallelStream: UNSORTED) Elapsed time [ns] : 39580682 (39 ms)
16:09:23.875 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count: UNSORTED) Elapsed time [ns] : 97852866 (97 ms)
16:09:25.537 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count in parallel: UNSORTED) Elapsed time [ns] : 94884189 (94 ms)
16:09:35.608 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Stream: SORTED) Elapsed time [ns] : 361717676 (361 ms)
16:09:38.439 [main] INFO  c.g.s.playground.util.time.Stopwatch - (ParallelStream: SORTED) Elapsed time [ns] : 150115808 (150 ms)
16:09:41.308 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count: SORTED) Elapsed time [ns] : 338335743 (338 ms)
16:09:44.209 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count in parallel: SORTED) Elapsed time [ns] : 370968432 (370 ms)
16:09:50.693 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Stream: IN REVERSE ORDER) Elapsed time [ns] : 352036140 (352 ms)
16:09:53.323 [main] INFO  c.g.s.playground.util.time.Stopwatch - (ParallelStream: IN REVERSE ORDER) Elapsed time [ns] : 151044664 (151 ms)
16:09:56.159 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count: IN REVERSE ORDER) Elapsed time [ns] : 359281197 (359 ms)
16:09:58.991 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count in parallel: IN REVERSE ORDER) Elapsed time [ns] : 353177542 (353 ms)

那么,我的问题是为什么过滤一个未排序的列表比过滤一个已排序的列表更快呢?


共1个答案

匿名用户

当您使用未排序列表时,所有元组都是按内存顺序访问的。它们已在RAM中连续分配。CPU喜欢按顺序访问内存,因为它们可以推测性地请求下一个缓存行,这样在需要时它将始终存在。

当您对列表进行排序时,您将其按随机顺序排列,因为您的排序键是随机生成的。这意味着对元组成员的内存访问是不可预测的。CPU不能预取内存,几乎每一次对元组的访问都是一次缓存未命中。

这是一个很好的例子,说明了GC内存管理的一个特殊优点:一起分配和一起使用的数据结构性能非常好。它们有很大的参照点。

在这种情况下,缓存未命中带来的损失大于保存的分支预测损失。

这个问题是公认的答案,也回答了我的问题:为什么处理排序数组比处理未排序数组慢?

当我创建原始的sorted-即它的元素顺序地存在于内存中时,执行时间没有差别,并且当被随机数填充时,它与版本相等。