我有一个很大的data. table
,有两列,id
和var
:
head(DT)
# id var
# 1: 1 B
# 2: 1 C
# 3: 1 A
# 4: 1 C
# 5: 2 B
# 6: 2 C
我想创建一种交叉表,显示数据中出现了多少次不同长度的2组合var
。
示例数据的预期输出:
out
# A B C
# A 0 3 3
# B NA 1 3
# C NA NA 0
解释:
(只要有相关信息,结果也可以用长格式给出。)
我相信有一种聪明(有效)的计算方法,但是我现在还不能理解。
样本数据:
DT <- structure(list(id = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L), var = c("B", "C", "A",
"C", "B", "C", "C", "A", "B", "B", "C", "C", "C", "C", "B", "C",
"B", "A", "C", "B")), .Names = c("id", "var"), row.names = c(NA,
-20L), class = "data.frame")
library(data.table)
setDT(DT, key = "id")
因为你可以接受长格式的结果:
DT[, if(all(var == var[1]))
.(var[1], var[1])
else
as.data.table(t(combn(sort(unique(var)), 2))), by = id][
, .N, by = .(V1, V2)]
# V1 V2 N
#1: A B 3
#2: A C 3
#3: B C 3
#4: B B 1
或者如果我们调用上面的输出res
:
dcast(res[CJ(c(V1,V2), c(V1,V2), unique = T), on = c('V1', 'V2')][
V1 == V2 & is.na(N), N := 0], V1 ~ V2)
# V1 A B C
#1: A 0 3 3
#2: B NA 1 3
#3: C NA NA 0
组合
的替代方法是:
DT[, if (all(var == var[1]))
.(var[1], var[1])
else
CJ(var, var, unique = T)[V1 < V2], by = id][
, .N, by = .(V1, V2)]
# V1 V2 N
# 1: A B 3
# 2: A C 3
# 3: B C 3
# 4: B B 1
# or combn with list output (instead of matrix)
unique(DT, by=NULL)[ order(var), if(.N==1L)
.(var, var)
else
transpose(combn(var, 2, simplify=FALSE)), by = id][
, .N, by = .(V1, V2)]