我有以下数据框架,但当然规模更大:
我想得到以下结果,即墨西哥和美国各自的sp_m014(男性)和sp_f014(女性)之和:
在我的真实数据框架中,我有更多的年龄范围,这里我只显示了男性和女性的014。但是我想对每个年龄范围和性别进行总结。
谢谢!
按国家分组,年份汇总
以将应变更新为sp,并获取num_cases的sum
library(dplyr)
df1 %>%
group_by(country, year) %>%
summarise(strain = 'sp', num_cases = sum(num_cases), .groups = 'drop')
-输出
# A tibble: 4 x 4
# country year strain num_cases
#* <chr> <int> <chr> <int>
#1 mex 1996 sp 626
#2 mex 1998 sp 350
#3 usa 1996 sp 380
#4 usa 1997 sp 340
df1 <- structure(list(country = c("mex", "mex", "mex", "mex", "usa",
"usa", "usa", "usa"), year = c(1996L, 1996L, 1998L, 1998L, 1996L,
1996L, 1997L, 1997L), strain = c("sp_m014", "sp_f014", "sp_m014",
"sp_f014", "sp_m014", "sp_f014", "sp_m014", "sp_f014"), num_cases = c(412L,
214L, 150L, 200L, 200L, 180L, 190L, 150L)),
class = "data.frame", row.names = c(NA,
-8L))
这是一个使用tidyr::exacy的方法:
library(tidyr);library(dplyr)
df1 %>%
extract(strain, into = c("strain","sex","age"), "(\\w+)_([mf])(.*)") %>%
group_by(country,year,strain) %>%
summarise(across(num_cases,sum))
# A tibble: 4 x 4
# Groups: country, year [4]
country year strain num_cases
<chr> <int> <chr> <int>
1 mex 1996 sp 626
2 mex 1998 sp 350
3 usa 1996 sp 380
4 usa 1997 sp 340
现在你已经完全解析了菌株,你可以很容易地按性别或年龄分组。感谢@akrun提供的数据。
更新:要使用年龄范围,您可以执行parse_number
df1 %>%
mutate(age_range=parse_number(strain)) %>%
group_by(country, year, age_range) %>%
summarise(num_cases=sum(num_cases))
输出:
country year age_range num_cases
<chr> <int> <dbl> <int>
1 mex 1996 14 626
2 mex 1998 14 350
3 usa 1996 14 380
4 usa 1997 14 340
第一个答案:感谢akrun提供的数据:
library(tidyverse)
df1 %>%
group_by(country, year, strain) %>%
mutate(strain=str_extract(strain, "^.{2}")) %>%
summarise(num_cases=sum(num_cases))
输出:
country year strain num_cases
<chr> <int> <chr> <int>
1 mex 1996 sp 626
2 mex 1998 sp 350
3 usa 1996 sp 380
4 usa 1997 sp 340