我想使用我自己的binary_crossentropy,而不是使用Keras库自带的。这是我的自定义函数:
import theano
from keras import backend as K
def elementwise_multiply(a, b): # a and b are tensors
c = a * b
return theano.function([a, b], c)
def custom_objective(y_true, y_pred):
first_log = K.log(y_pred)
first_log = elementwise_multiply(first_log, y_true)
second_log = K.log(1 - y_pred)
second_log = elementwise_multiply(second_log, (1 - y_true))
result = second_log + first_log
return K.mean(result, axis=-1)
注意:这是为了练习。我知道T. nnet。binary_crossentropy(y_pred,y_true)
但是,当我编译模型时:
sgd = SGD(lr=0.001)
model.compile(loss = custom_objective, optimizer = sgd)
我得到这个错误:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) in () 36 37 sgd = SGD(lr=0.001) ---
C:\Program Files(x86)\Anaconda3\lib\site-包\keras\models.py在编译中(self,优化器,丢失,class_mode)418 else: 419掩码=无--
C:\Program Files(x86)\Anaconda3\lib\site-包\keras\models.py加权(y_true,y_pred,权重,掩码)80"'81#score_array有ndim
custom_objective(y_truey_pred)11second_log=K. log(1-K.clip(y_true,K.epsilon(),np.inf))12second_log=elementwise_multiply(second_log,(y_true))---
TypeError:'Function'和'Function'不支持的操作数类型
当我用内联函数替换elementwise_multiply时:
def custom_objective(y_true, y_pred):
first_log = K.log(y_pred)
first_log = first_log * y_true
second_log = K.log(1 - y_pred)
second_log = second_log * (1-y_true)
result = second_log + first_log
return K.mean(result, axis=-1)
模型编译但损失值为nan:
纪元1/1 945/945 [==============================] - 62s-损失: nan-acc:0.0011-val_loss:nan-val_acc:0.0000e 00
有人能帮我拿一下这个吗?!
谢啦
我发现了问题。我必须将返回值乘以“-1”,因为我使用随机梯度下降(sgd)作为优化器,而不是随机梯度上升!
这是代码,它就像一个魅力:
import theano
from keras import backend as K
def custom_objective(y_true, y_pred):
first_log = K.log(y_pred)
first_log = first_log * y_true
second_log = K.log(1 - y_pred)
second_log = second_log * (1 - y_true)
result = second_log + first_log
return (-1 * K.mean(result))