我正在尝试重新创建此代码:https://github.com/Code-Bullet/Smart-Dots-Genetic-Algorithm-Tutorial/tree/master/BestTutorialEver,但在python中,如果它不起作用,它会不断变异最佳点,每一代都会从较少的点开始。下面是代码(我使用pygame进行图形处理):
大脑类:
class Brain(object):
def __init__(self, size):
self.size = size
self.step = 0
self.directions = [[0.0, 0.0] for j in range(size)]
for i in range(len(self.directions)):
randomAngle = random.uniform(0, 2 * math.pi)
self.directions[i][0] = math.sin(randomAngle)
self.directions[i][1] = math.cos(randomAngle)
def mutate(self):
mutationRate = 1
for i in range(self.size):
rand = random.random()
if rand < mutationRate:
dirAngle = math.acos(self.directions[i][1]) * (1.0 + random.random())
self.directions[i][0] = math.sin(dirAngle)
self.directions[i][1] = math.cos(dirAngle)
人口类别:
class Population(object):
def __init__(self, size, win):
self.bestDot = 0
self.fitnessSum = 0.0
self.win = win
self.size = size
self.dots = [Dot(win) for i in range(size)]
def show(self):
for i in range(self.size-1):
self.dots[i+1].show()
self.dots[0].show()
def updt(self):
for i in range(self.size):
self.dots[i].updt()
def calculateFitness(self):
for i in range(self.size):
self.dots[i].calculateFitness()
def allDotsDead(self):
for i in range(self.size):
if not self.dots[i].dead and not self.dots[i].reachGoal:
return False
return True
def naturalSelection(self):
newDots = [Dot(self.win) for i in range(self.size)]
self.setBestDot()
self.calculateFitnessSum()
newDots[0] = self.dots[self.bestDot].baby()
newDots[0].isBest = True
for i in range(self.size-1):
parent = self.selectParent()
newDots[i+1] = parent.baby()
print(newDots[1])
self.dots = newDots
def calculateFitnessSum(self):
self.fitnessSum = 0.0
for i in range(self.size):
self.fitnessSum += self.dots[i].fitness
print(self.fitnessSum)
def selectParent(self):
rand = random.uniform(0, self.fitnessSum)
runningSum = 0.0
for i in range(self.size):
runningSum += self.dots[i].fitness
if runningSum >= rand:
return self.dots[i]
return None
def mutate(self):
for i in range(self.size):
if not self.dots[i].isBest:
self.dots[i].brain.mutate()
def setBestDot(self):
max = 0.0
maxIndex = 0
for i in range(len(self.dots)):
if self.dots[i].fitness > max:
max = self.dots[i].fitness
maxIndex = i
self.bestDot = maxIndex
点类:
WIDTH, HEIGHT = 720, 640
GOAL = (WIDTH / 2, 50)
class Dot(object):
def __init__(self, win):
self.win = win
self.fitness = 0
self.reachGoal = False
self.dead = False
self.brain = Brain(200)
self.pos = [WIDTH / 2, HEIGHT - 50]
self.vel = [0, 0]
self.acc = [0, 0]
self.isBest = False
def move(self):
if len(self.brain.directions) > self.brain.step:
self.acc = self.brain.directions[self.brain.step]
self.brain.step += 1
else:
self.dead = True
for i in range(len(self.vel)): self.vel[i] += self.acc[i]
if self.vel[0] >= 5: self.vel[0] = 5
if self.vel[1] >= 5: self.vel[1] = 5
for i in range(len(self.pos)): self.pos[i] += self.vel[i]
def show(self):
if self.isBest:
pygame.draw.circle(self.win, (0, 255, 0), self.pos, 4)
else:
pygame.draw.circle(self.win, (200, 100, 0), self.pos, 2)
def updt(self):
if not self.dead and not self.reachGoal:
self.move()
if self.pos[0] < 4 or self.pos[1] < 4 or self.pos[0] > WIDTH - 4 or self.pos[1] > HEIGHT - 4:
self.dead = True
elif math.hypot(self.pos[0] - GOAL[0], self.pos[1] - GOAL[1]) < 5:
self.reachGoal = True
def calculateFitness(self):
distToGoal = math.hypot(self.pos[0] - GOAL[0], self.pos[1] - GOAL[1])
self.fitness = 1.0 / 16.0 + 10000.0 / (distToGoal * distToGoal)
def baby(self):
baby = Dot(self.win)
baby.brain.directions = self.brain.directions
return baby
问题是,我认为最好的点不会变异,但它会变异或变成最差的点,我也不知道为什么,但在每一代中,越来越少的点产生(或点有完全相同的大脑,一点也不会变异),变异率是100%,但在每次运行中,点越来越少。这里是第一代和第五代的截图:https://imgur.com/a/675Jxit
此外,如果有人有一些python中的遗传算法作为模型,这将有所帮助。
我没有尝试你提到的项目。您可以尝试PyGAD,这是一个Python 3库,用于构建遗传算法和训练机器学习算法。它是开源的,你可以在GitHub上找到代码。
它使用简单,允许您以简单的方式控制交叉、突变和父选择运算符。您还可以使用PyGAD控制遗传算法的许多参数。
PyGAD 还与用户定义的适应度函数配合使用,因此您可以使其适应各种问题。
安装PyGAD(pip-install-PyGAD)后,这里有一个简单的示例,可以开始尝试找到满足以下等式的W1、W2和W3的最佳值:
44 = 4xW_1 - 2xW_2 1.2xW_3
import pygad
import numpy
function_inputs = [4,-2, 1.2]
desired_output = 44
def fitness_func(solution, solution_idx):
output = numpy.sum(solution*function_inputs)
fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
return fitness
def on_generation(ga_instance):
print(ga_instance.population)
ga_instance = pygad.GA(num_generations=50,
num_parents_mating=2,
fitness_func=fitness_func,
num_genes=3,
sol_per_pop=5)
ga_instance.run()
ga_instance.plot_result()
solution, solution_fitness, _ = ga_instance.best_solution()
print("Parameters of the best solution : {solution}".format(solution=solution))
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))