我正在使用来自python 3.4中的Scikit学习包的决策树分类器,我想为我的每个输入数据点获取相应的叶节点id。
例如,我的输入可能如下所示:
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2]])
假设对应的叶节点分别为16、5和45。我希望我的输出是:
leaf_node_id = array([16, 5, 45])
我已经阅读了scikit学习邮件列表和SF的相关问题,但我仍然无法让它发挥作用。下面是我在邮件列表中找到的一些提示,但仍然不起作用。
http://sourceforge.net/p/scikit-learn/mailman/message/31728624/
在一天结束时,我只想有一个函数GetLeafNode(clf,X_valida),这样它的输出就是相应的叶节点列表。下面是重现我收到的错误的代码。因此,任何建议都将不胜感激。
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)
# This gives the error message below:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-17-2ecc95213752> in <module>()
----> 1 clf.tree_.apply(X_train)
_tree.pyx in sklearn.tree._tree.Tree.apply (sklearn/tree/_tree.c:19595)()
ValueError: Buffer dtype mismatch, expected 'DTYPE_t' but got 'double'
自Scikit学习0.17以来,您可以使用决策树对象的应用方法来获取数据点在树中结束的叶子的索引。基于新机器人的回答:
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Compute the leaf node id for each of my training data points
clf.apply(X_train)
产生输出
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2])
我终于成功了。以下是一个基于我在scikit学习邮件列表中的通信信息的解决方案:
在scikit之后学习版本0.16。1、应用方法在clf中实现。因此,我遵循以下步骤:
clf中的apply
方法。树
X\u train=X\u train将输入数据数组(X\u train
,X\u valida
)从float64
转换为float32
。aType('float32')
apply
方法:clf。树。应用(X_train)
,您将获得每个数据点的叶节点id李>以下是最终代码:
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# convert data to float32
X_train = X_train.astype('float32')
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)
# This gives the leaf node id:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2])