Python源码示例:sklearn.metrics.precision_score()

示例1
def multi_class_classification(data_X,data_Y):
    '''
    calculate multi-class classification and return related evaluation metrics
    '''

    svc = svm.SVC(C=1, kernel='linear')
    # X_train, X_test, y_train, y_test = train_test_split( data_X, data_Y, test_size=0.4, random_state=0) 
    clf = svc.fit(data_X, data_Y) #svm
    # array = svc.coef_
    # print array
    predicted = cross_val_predict(clf, data_X, data_Y, cv=2)
    print "accuracy",metrics.accuracy_score(data_Y, predicted)
    print "f1 score macro",metrics.f1_score(data_Y, predicted, average='macro') 
    print "f1 score micro",metrics.f1_score(data_Y, predicted, average='micro') 
    print "precision score",metrics.precision_score(data_Y, predicted, average='macro') 
    print "recall score",metrics.recall_score(data_Y, predicted, average='macro') 
    print "hamming_loss",metrics.hamming_loss(data_Y, predicted)
    print "classification_report", metrics.classification_report(data_Y, predicted)
    print "jaccard_similarity_score", metrics.jaccard_similarity_score(data_Y, predicted)
    # print "log_loss", metrics.log_loss(data_Y, predicted)
    print "zero_one_loss", metrics.zero_one_loss(data_Y, predicted)
    # print "AUC&ROC",metrics.roc_auc_score(data_Y, predicted)
    # print "matthews_corrcoef", metrics.matthews_corrcoef(data_Y, predicted) 
示例2
def evaluation_analysis(true_label,predicted): 
    '''
    return all metrics results
    '''
    print "accuracy",metrics.accuracy_score(true_label, predicted)
    print "f1 score macro",metrics.f1_score(true_label, predicted, average='macro')     
    print "f1 score micro",metrics.f1_score(true_label, predicted, average='micro') 
    print "precision score",metrics.precision_score(true_label, predicted, average='macro') 
    print "recall score",metrics.recall_score(true_label, predicted, average='macro') 
    print "hamming_loss",metrics.hamming_loss(true_label, predicted)
    print "classification_report", metrics.classification_report(true_label, predicted)
    print "jaccard_similarity_score", metrics.jaccard_similarity_score(true_label, predicted)
    print "log_loss", metrics.log_loss(true_label, predicted)
    print "zero_one_loss", metrics.zero_one_loss(true_label, predicted)
    print "AUC&ROC",metrics.roc_auc_score(true_label, predicted)
    print "matthews_corrcoef", metrics.matthews_corrcoef(true_label, predicted) 
示例3
def classification_scores(gts, preds, labels):
    accuracy        = metrics.accuracy_score(gts,  preds)
    class_accuracies = []
    for lab in labels: # TODO Fix
        class_accuracies.append(metrics.accuracy_score(gts[gts == lab], preds[gts == lab]))
    class_accuracies = np.array(class_accuracies)

    f1_micro        = metrics.f1_score(gts,        preds, average='micro')
    precision_micro = metrics.precision_score(gts, preds, average='micro')
    recall_micro    = metrics.recall_score(gts,    preds, average='micro')
    f1_macro        = metrics.f1_score(gts,        preds, average='macro')
    precision_macro = metrics.precision_score(gts, preds, average='macro')
    recall_macro    = metrics.recall_score(gts,    preds, average='macro')

    # class wise score
    f1s        = metrics.f1_score(gts,        preds, average=None)
    precisions = metrics.precision_score(gts, preds, average=None)
    recalls    = metrics.recall_score(gts,    preds, average=None)

    confusion = metrics.confusion_matrix(gts,preds, labels=labels)

    #TODO confusion matrix, recall, precision
    return accuracy, f1_micro, precision_micro, recall_micro, f1_macro, precision_macro, recall_macro, confusion, class_accuracies, f1s, precisions, recalls 
示例4
def get_all_metrics(model, eval_data, eval_labels, pred_labels):
    fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
    auc_ = auc(fpr, tpr)
    print("auc_keras:" + str(auc_))

    score = model.evaluate(eval_data, eval_labels, verbose=0)
    print("Test accuracy: " + str(score[1]))

    precision = precision_score(eval_labels, pred_labels)
    print('Precision score: {0:0.2f}'.format(precision))

    recall = recall_score(eval_labels, pred_labels)
    print('Recall score: {0:0.2f}'.format(recall))

    f1 = f1_score(eval_labels, pred_labels)
    print('F1 score: {0:0.2f}'.format(f1))

    average_precision = average_precision_score(eval_labels, pred_labels)
    print('Average precision-recall score: {0:0.2f}'.format(average_precision))

    return auc_, score[1], precision, recall, f1, average_precision, fpr, tpr 
示例5
def get_all_metrics_(eval_labels, pred_labels):
    fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
    auc_ = auc(fpr, tpr)
    print("auc_keras:" + str(auc_))

    precision = precision_score(eval_labels, pred_labels)
    print('Precision score: {0:0.2f}'.format(precision))

    recall = recall_score(eval_labels, pred_labels)
    print('Recall score: {0:0.2f}'.format(recall))

    f1 = f1_score(eval_labels, pred_labels)
    print('F1 score: {0:0.2f}'.format(f1))

    average_precision = average_precision_score(eval_labels, pred_labels)
    print('Average precision-recall score: {0:0.2f}'.format(average_precision))

    return auc_, precision, recall, f1, average_precision, fpr, tpr 
示例6
def run_evaluate(self, test):
        """Evaluates performance on test set

        Args:
            test: dataset that yields tuple of (sentences, relation tags)

        Returns:
            metrics: (dict) metrics["acc"] = 98.4, ...

        """
        y_true, y_pred = [], []
        for data in minibatches(test, self.config.batch_size):
            word_batch, pos1_batch, pos2_batch, pos_batch, y_batch = data
            relations_pred = self.predict_batch(word_batch, pos1_batch, pos2_batch, pos_batch)
            assert len(relations_pred) == len(y_batch)
            y_true += y_batch
            y_pred += relations_pred.tolist()

        acc = accuracy_score(y_true, y_pred)
        p   = precision_score(y_true, y_pred, average='macro')
        r   = recall_score(y_true, y_pred, average='macro')
        f1  = f1_score(y_true, y_pred, average='macro')

        return {"acc":acc, "p":p, "r":r, "f1":f1} 
示例7
def evaluate(trueValues, predicted, decimals, note):
	print note
	label = 1
	avg = 'weighted'
	a = accuracy_score(trueValues, predicted)
	p = precision_score(trueValues, predicted, pos_label=label, average=avg)
	r = recall_score(trueValues, predicted, pos_label=label, average=avg)
	avg_f1 = f1_score(trueValues, predicted, pos_label=label, average=avg)
	fclasses = f1_score(trueValues, predicted, average=None)
	f1c1 = fclasses[0]; f1c2 = fclasses[1]
	fw = (f1c1 + f1c2)/2.0

	print 'accuracy:\t', str(round(a,decimals))
	print 'precision:\t', str(round(p,decimals))
	print 'recall:\t', str(round(r,decimals))
	print 'avg f1:\t', str(round(avg_f1,decimals))
	print 'c1 f1:\t', str(round(f1c1,decimals))
	print 'c2 f1:\t', str(round(f1c2,decimals))
	print 'avg(c1,c2):\t', str(round(fw,decimals))
	print '------------'

###################################################################################


# split a parallel or comparable corpus into two parts 
示例8
def accuracy(y_true, y_pred):        
    # 计算混淆矩阵
    y = np.zeros(len(y_true))
    y_ = np.zeros(len(y_true))    
    for i in range(len(y_true)): 
        y[i] = np.argmax(y_true[i,:])
        y_[i] = np.argmax(y_pred[i,:])
    cnf_mat = confusion_matrix(y, y_)
    
    # Acc = 1.0*(cnf_mat[1][1]+cnf_mat[0][0])/len(y_true)
    # Sens = 1.0*cnf_mat[1][1]/(cnf_mat[1][1]+cnf_mat[1][0])
    # Spec = 1.0*cnf_mat[0][0]/(cnf_mat[0][0]+cnf_mat[0][1])
    
    # # 绘制ROC曲线
    # fpr, tpr, thresholds = roc_curve(y_true[:,0], y_pred[:,0])
    # Auc = auc(fpr, tpr)
    
    
    # 计算多分类评价值
    Sens = recall_score(y, y_, average='macro')
    Prec = precision_score(y, y_, average='macro')
    F1 = f1_score(y, y_, average='weighted') 
    Support = precision_recall_fscore_support(y, y_, beta=0.5, average=None)
    return Sens, Prec, F1, cnf_mat 
示例9
def calculate_scores(y_predicted, y_true):
    """
    Function to calculate different performance scores
    """
    accuracy = accuracy_score(y_pred=y_predicted, y_true=y_true)
    precision = precision_score(y_pred=y_predicted, y_true=y_true)
    average_precision_score1 = average_precision_score(y_score=y_predicted, y_true=y_true)
    f1_score1 = f1_score(y_pred=y_predicted, y_true=y_true)

    print("Accuracy score:", accuracy)
    print("Precision score:", precision)
    print("Average Precision score:", average_precision_score1)
    print("F1 score:", f1_score1)
    print("Outlier detection and/or treatment completed.")

    return {"accuracy": accuracy,
            "precision": precision,
            "average_precision_score": average_precision_score1,
            "f1_score": f1_score1,
            } 
示例10
def test_zero_precision_recall():
    # Check that pathological cases do not bring NaNs

    old_error_settings = np.seterr(all='raise')

    try:
        y_true = np.array([0, 1, 2, 0, 1, 2])
        y_pred = np.array([2, 0, 1, 1, 2, 0])

        assert_almost_equal(precision_score(y_true, y_pred,
                                            average='macro'), 0.0, 2)
        assert_almost_equal(recall_score(y_true, y_pred, average='macro'),
                            0.0, 2)
        assert_almost_equal(f1_score(y_true, y_pred, average='macro'),
                            0.0, 2)

    finally:
        np.seterr(**old_error_settings) 
示例11
def test_precision_warnings():
    clean_warning_registry()
    with warnings.catch_warnings(record=True) as record:
        warnings.simplefilter('always')
        precision_score(np.array([[1, 1], [1, 1]]),
                        np.array([[0, 0], [0, 0]]),
                        average='micro')
        assert_equal(str(record.pop().message),
                     'Precision is ill-defined and '
                     'being set to 0.0 due to no predicted samples.')
        precision_score([0, 0], [0, 0])
        assert_equal(str(record.pop().message),
                     'Precision is ill-defined and '
                     'being set to 0.0 due to no predicted samples.')

    assert_no_warnings(precision_score,
                       np.array([[0, 0], [0, 0]]),
                       np.array([[1, 1], [1, 1]]),
                       average='micro') 
示例12
def test_ovr_multilabel_dataset():
    base_clf = MultinomialNB(alpha=1)
    for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)):
        X, Y = datasets.make_multilabel_classification(n_samples=100,
                                                       n_features=20,
                                                       n_classes=5,
                                                       n_labels=2,
                                                       length=50,
                                                       allow_unlabeled=au,
                                                       random_state=0)
        X_train, Y_train = X[:80], Y[:80]
        X_test, Y_test = X[80:], Y[80:]
        clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
        Y_pred = clf.predict(X_test)

        assert clf.multilabel_
        assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"),
                            prec,
                            decimal=2)
        assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"),
                            recall,
                            decimal=2) 
示例13
def get_score(self, model, texta, textb, labels, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        assert texta.size(1) == textb.size(1) == len(labels)
        vec_predict = model(texta, textb)
        soft_predict = torch.softmax(vec_predict, dim=1)
        predict_prob, predict_index = torch.max(soft_predict.cpu().data, dim=1)
        # print('prob', predict_prob)
        # print('index', predict_index)
        # print('labels', labels)
        labels = labels.view(-1).cpu().data.numpy()
        return metric_func(predict_index, labels, average='micro') 
示例14
def get_score(self, model, texta, textb, labels, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        assert texta.size(1) == textb.size(1) == len(labels)
        predict_prob = model(texta, textb)
        # print('predict', predict_prob)
        # print('labels', labels)
        predict_labels = torch.gt(predict_prob, 0.5)
        predict_labels = predict_labels.view(-1).cpu().data.numpy()
        labels = labels.view(-1).cpu().data.numpy()
        return metric_func(predict_labels, labels, average='micro') 
示例15
def get_score(self, model, x, y, pos, rel, field_x, field_y, field_pos, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        vec_x = torch.tensor([field_x.stoi[i] for i in x])
        len_vec_x = torch.tensor([len(vec_x)]).to(DEVICE)
        vec_pos = torch.tensor([field_pos.stoi[i] for i in pos])
        vec_rel = torch.tensor([int(x) for x in rel])
        predict_y = model(vec_x.view(-1, 1).to(DEVICE), vec_pos.view(-1, 1).to(DEVICE), vec_rel.view(-1, 1).to(DEVICE),
                          len_vec_x)[0]
        true_y = [field_y.stoi[i] for i in y]
        assert len(true_y) == len(predict_y)
        return metric_func(predict_y, true_y, average='micro') 
示例16
def get_score(self, model, x, y, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        outputs, dep_graph, actions_done = model(x)
        assert len(actions_done) == len(y)
        predict_y = actions_done
        true_y = y.cpu().view(-1).tolist()
        # print(actions_done, y)
        # print(actions_done)
        # print(true_y)
        return metric_func(predict_y, true_y, average='micro') 
示例17
def get_score(self, model, texts, labels, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        assert texts.size(0) == len(labels)
        vec_predict = model(texts)
        soft_predict = torch.softmax(vec_predict, dim=1)
        predict_prob, predict_index = torch.max(soft_predict.cpu().data, dim=1)
        # print('prob', predict_prob)
        # print('index', predict_index)
        # print('labels', labels)
        labels = labels.view(-1).cpu().data.numpy()
        return metric_func(predict_index, labels, average='micro') 
示例18
def get_score(self, model, texts, labels, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        assert len(texts) == len(labels)
        vec_predict = model(texts)
        soft_predict = torch.softmax(vec_predict, dim=1)
        predict_prob, predict_index = torch.max(soft_predict.cpu().data, dim=1)
        # print('prob', predict_prob)
        # print('index', predict_index)
        # print('labels', labels)
        labels = labels.view(-1).cpu().data.numpy()
        return metric_func(predict_index, labels, average='micro') 
示例19
def get_score(self, model, src, src_lens, trg, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        output = model(src, src_lens, trg)
        output = output[1:].contiguous()
        output = output.view(-1, output.shape[-1])
        trg = trg.transpose(1, 0)
        trg = trg[1:].contiguous()
        trg = trg.view(-1)
        soft_predict = torch.softmax(output, dim=1)
        predict_prob, predict_index = torch.max(soft_predict.cpu().data, dim=1)
        labels = trg.cpu().data.numpy()
        return metric_func(predict_index, labels, average='micro') 
示例20
def get_score(self, model, src, src_lens, trg, score_type='f1'):
        metrics_map = {
            'f1': f1_score,
            'p': precision_score,
            'r': recall_score,
            'acc': accuracy_score
        }
        metric_func = metrics_map[score_type] if score_type in metrics_map else metrics_map['f1']
        output = model(src, src_lens, trg)
        output = output[1:].contiguous()
        output = output.view(-1, output.shape[-1])
        trg = trg.transpose(1, 0)
        trg = trg[1:].contiguous()
        trg = trg.view(-1)
        soft_predict = torch.softmax(output, dim=1)
        predict_prob, predict_index = torch.max(soft_predict.cpu().data, dim=1)
        labels = trg.cpu().data.numpy()
        return metric_func(predict_index, labels, average='micro') 
示例21
def add_run(self, y_true, y_pred, domains_test):
        """
        Add a completed run
        :param domains_test:
        :param y_true: true labels
        :param y_pred:  predicted labels
        :return:
        """
        log.verbose('Adding run.\ny_true: {!s}\ny_pred: {!s}'.format(y_true, y_pred))
        self.ys.append((y_true, y_pred))
        self.y_true = numpy.concatenate((self.y_true, y_true))
        self.y_pred = numpy.concatenate((self.y_pred, y_pred))
        self.cms.append(confusion_matrix(y_true, y_pred))
        self.scores = {'accuracy': [accuracy_score(y_true, y_pred)],
                       'precision': [precision_score(y_true, y_pred)],
                       'recall': [recall_score(y_true, y_pred)],
                       'roc': [roc_auc_score(y_true, y_pred)],
                       'f1': [f1_score(y_true, y_pred)]}
        for i in range(len(y_true)):
            if y_true[i] != y_pred[i]:
                self.missclassified.append((domains_test[i], y_true[i])) 
示例22
def test_precision_op(generator_fn, y_true_all, y_pred_all, pos_indices,
                      average):
    # Precision on the whole dataset
    pr_sk = precision_score(
        y_true_all, y_pred_all, pos_indices, average=average)

    # Create Tensorflow graph
    ds = tf.data.Dataset.from_generator(
        generator_fn, (tf.int32, tf.int32), ([None], [None]))
    y_true, y_pred = ds.make_one_shot_iterator().get_next()
    pr_tf = tf_metrics.precision(y_true, y_pred, 4, pos_indices,
                                 average=average)

    with tf.Session() as sess:
        # Initialize and run the update op on each batch
        sess.run(tf.local_variables_initializer())
        while True:
            try:
                sess.run(pr_tf[1])
            except OutOfRangeError as e:
                break

        # Check final value
        assert np.allclose(sess.run(pr_tf[0]), pr_sk) 
示例23
def test_model_predict(booster):
    """
    test xgboost train in the single node
    :return: true if pass the test
    """
    rank = 1
    world_size = 10
    place = "/tmp/data"
    dmatrix, y_test = read_predict_data(rank, world_size, place)

    preds = booster.predict(dmatrix)
    best_preds = np.asarray([np.argmax(line) for line in preds])
    score = precision_score(y_test, best_preds, average='macro')

    assert score > 0.99

    logging.info("Predict accuracy: %f", score)

    return True 
示例24
def predict(args):
    """
    This is the demonstration for the batch prediction
    :param args: parameter for model related config
    """

    addr, port, rank, world_size = extract_xgbooost_cluster_env()

    dmatrix, y_test = read_predict_data(rank, world_size, None)

    model_path = args.model_path
    storage_type = args.model_storage_type
    booster = read_model(storage_type, model_path, args)

    preds = booster.predict(dmatrix)

    best_preds = np.asarray([np.argmax(line) for line in preds])
    score = precision_score(y_test, best_preds, average='macro')

    logging.info("Predict accuracy: %f", score) 
示例25
def simple_evaluate(y_true, y_pred):
    """
    evaluate precision, recall, f1
    :param y_true:
    :param y_pred:
    :return:score
    """
    assert len(y_true) == len(y_pred), \
        "the count of pred label should be same with true label"

    classify_report = metrics.classification_report(y_true, y_pred)
    confusion_matrix = metrics.confusion_matrix(y_true, y_pred)
    overall_accuracy = metrics.accuracy_score(y_true, y_pred)
    acc_for_each_class = metrics.precision_score(y_true, y_pred, average=None)
    average_accuracy = np.mean(acc_for_each_class)
    score = metrics.accuracy_score(y_true, y_pred)
    print('classify_report : \n', classify_report)
    print('confusion_matrix : \n', confusion_matrix)
    print('acc_for_each_class : \n', acc_for_each_class)
    print('average_accuracy: {0:f}'.format(average_accuracy))
    print('overall_accuracy: {0:f}'.format(overall_accuracy))
    print('score: {0:f}'.format(score))
    return score 
示例26
def calc_metrics(y_true, y_hat, max_steps=1000):
    y_true = np.array(y_true)
    y_hat = np.array(y_hat)
    metrics = {}
    metrics['Logloss'] = float(log_loss(y_true, y_hat))
    metrics['AUC'] = roc_auc_score(y_true, y_hat)
    metrics['F1'] = []
    metrics['Precision'] = []
    metrics['Recall'] = []
    for i in range(1, max_steps):
        threshold = float(i) / max_steps
        y_tmp = y_hat > threshold
        metrics['F1'].append(f1_score(y_true, y_tmp))
        metrics['Precision'].append(precision_score(y_true, y_tmp))
        metrics['Recall'].append(recall_score(y_true, y_tmp))
    max_idx = np.argmax(metrics['F1'])
    metrics['F1'] = metrics['F1'][max_idx]
    metrics['Precision'] = metrics['Precision'][max_idx]
    metrics['Recall'] = metrics['Recall'][max_idx]
    metrics['Threshold'] = float(max_idx + 1) / max_steps
    return metrics 
示例27
def evaluate_precision_recall(y, target, labels):
  import sklearn.metrics as metrics
  target = target[:len(y)]
  num_classes = max(target) + 1
  results = []
  for i in range(num_classes):
    class_target = _extract_single_class(i, target)
    class_y = _extract_single_class(i, y)

    results.append({
      'precision': metrics.precision_score(class_target, class_y),
      'recall': metrics.recall_score(class_target, class_y),
      'f1': metrics.f1_score(class_target, class_y),
      'fraction': sum(class_target)/len(target),
      '#of_class': int(sum(class_target)),
      'label': labels[i],
      'label_id': i
      # 'tp': tp
    })
    print('%d/%d' % (i, num_classes), results[-1])
  accuracy = metrics.accuracy_score(target, y)
  return accuracy, results 
示例28
def report_evaluation_metrics(y_true, y_pred):
    average_precision = average_precision_score(y_true, y_pred)
    precision = precision_score(y_true, y_pred, labels=[0, 1], pos_label=1)
    recall = recall_score(y_true, y_pred, labels=[0, 1], pos_label=1)
    f1 = f1_score(y_true, y_pred, labels=[0, 1], pos_label=1)

    print('Average precision-recall score: {0:0.2f}'.format(average_precision))
    print('Precision: {0:0.2f}'.format(precision))
    print('Recall: {0:0.2f}'.format(recall))
    print('F1: {0:0.2f}'.format(f1)) 
示例29
def report_metrics(self, threshold):
        for average_strategy in ["micro", "macro"]:
            print("{} average strategy, threshold {}".format(average_strategy, threshold))
            print("precision:\t{}".format(precision_score(self.y_true, self.y_pred, average=average_strategy)))
            print("recall:\t{}".format(recall_score(self.y_true, self.y_pred, average=average_strategy)))
            print("f1:\t{}".format(f1_score(self.y_true, self.y_pred, average=average_strategy))) 
示例30
def precision_and_recall(label_gt, label_pred, n_class):
    from sklearn.metrics import precision_score, recall_score
    assert len(label_gt) == len(label_pred)
    precision = np.zeros(n_class, dtype=np.float32)
    recall = np.zeros(n_class, dtype=np.float32)
    img_A = np.array(label_gt, dtype=np.float32).flatten()
    img_B = np.array(label_pred, dtype=np.float32).flatten()
    precision[:] = precision_score(img_A, img_B, average=None, labels=range(n_class))
    recall[:] = recall_score(img_A, img_B, average=None, labels=range(n_class))

    return precision, recall