Python源码示例:sklearn.metrics.auc()

示例1
def fit_model(self, data, cross_val_data, cross_val_labels):
        eval_metrics = []
        for i in range(self.n_ensemble):
            train_sm = np.concatenate(cross_val_data[:i] +
                                      cross_val_data[(i + 1):])
            test_sm = cross_val_data[i]
            train_labels = np.concatenate(cross_val_labels[:i] +
                                          cross_val_labels[(i + 1):])
            test_labels = cross_val_labels[i]
            fp_train = get_fp(train_sm)
            fp_test = get_fp(test_sm)
            self.model[i].fit(fp_train, train_labels.ravel())
            predicted = self.model[i].predict(fp_test)
            if self.model_type == 'classifier':
                fpr, tpr, thresholds = metrics.roc_curve(test_labels, predicted)
                eval_metrics.append(metrics.auc(fpr, tpr))
                metrics_type = 'AUC'
            elif self.model_type == 'regressor':
                r2 = metrics.r2_score(test_labels, predicted)
                eval_metrics.append(r2)
                metrics_type = 'R^2 score'
        return eval_metrics, metrics_type 
示例2
def compute_roc(y_true, y_pred, plot=False):
    """
    TODO
    :param y_true: ground truth
    :param y_pred: predictions
    :param plot:
    :return:
    """
    fpr, tpr, _ = roc_curve(y_true, y_pred)
    auc_score = auc(fpr, tpr)
    if plot:
        plt.figure(figsize=(7, 6))
        plt.plot(fpr, tpr, color='blue',
                 label='ROC (AUC = %0.4f)' % auc_score)
        plt.legend(loc='lower right')
        plt.title("ROC Curve")
        plt.xlabel("FPR")
        plt.ylabel("TPR")
        plt.show()

    return fpr, tpr, auc_score 
示例3
def compute_roc_rfeinman(probs_neg, probs_pos, plot=False):
    """
    TODO
    :param probs_neg:
    :param probs_pos:
    :param plot:
    :return:
    """
    probs = np.concatenate((probs_neg, probs_pos))
    labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
    fpr, tpr, _ = roc_curve(labels, probs)
    auc_score = auc(fpr, tpr)
    if plot:
        plt.figure(figsize=(7, 6))
        plt.plot(fpr, tpr, color='blue',
                 label='ROC (AUC = %0.4f)' % auc_score)
        plt.legend(loc='lower right')
        plt.title("ROC Curve")
        plt.xlabel("FPR")
        plt.ylabel("TPR")
        plt.show()

    return fpr, tpr, auc_score 
示例4
def compute_auc(y_true, y_pred, label_index):
    """Compute Area Under the Curve (AUC) metric.
    Args:
        y_true: true class
        y_pred: probabilities for a class
        label_index:
            label_index == 1 => laughter (class1) vs. others (class0)
            label_index == 2 => filler (class1) vs. others (class0)
    Returns:
        auc_val: AUC metric accuracy
    """
    for i in range(y_true.shape[0]):
        y_true[i] = 0 if y_true[i] != label_index else 1

    y_true = np.reshape(y_true, (-1,))
    y_pred = np.reshape(y_pred[:, label_index], (-1,))

    try:
        fpr, tpr, _ = roc_curve(y_true, y_pred, pos_label=1)
    except UndefinedMetricWarning:
        pass
    auc_val = auc(fpr, tpr)
    return auc_val 
示例5
def roc(self, data, model, tt, name):
        scores = self.get_predictions_loss(data, model, tt)[0]
        labels = [prot["label"][:, 2] for prot in data[tt]]
        fprs = []
        tprs = []
        roc_aucs = []
        for s, l in zip(scores, labels):
            fpr, tpr, _ = roc_curve(l, s)
            roc_auc = auc(fpr, tpr)
            fprs.append(fpr)
            tprs.append(tpr)
            roc_aucs.append(roc_auc)
        auc_prot_med = np.median(roc_aucs)
        auc_prot_ave = np.mean(roc_aucs)
        printt("{} average protein auc: {:0.3f}".format(name, auc_prot_ave))
        printt("{} median protein auc: {:0.3f}".format(name, auc_prot_med))
        return ["auc_prot_ave_" + tt, "auc_prot_med_" + tt], [auc_prot_ave, auc_prot_med] 
示例6
def get_all_metrics(model, eval_data, eval_labels, pred_labels):
    fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
    auc_ = auc(fpr, tpr)
    print("auc_keras:" + str(auc_))

    score = model.evaluate(eval_data, eval_labels, verbose=0)
    print("Test accuracy: " + str(score[1]))

    precision = precision_score(eval_labels, pred_labels)
    print('Precision score: {0:0.2f}'.format(precision))

    recall = recall_score(eval_labels, pred_labels)
    print('Recall score: {0:0.2f}'.format(recall))

    f1 = f1_score(eval_labels, pred_labels)
    print('F1 score: {0:0.2f}'.format(f1))

    average_precision = average_precision_score(eval_labels, pred_labels)
    print('Average precision-recall score: {0:0.2f}'.format(average_precision))

    return auc_, score[1], precision, recall, f1, average_precision, fpr, tpr 
示例7
def get_all_metrics_(eval_labels, pred_labels):
    fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
    auc_ = auc(fpr, tpr)
    print("auc_keras:" + str(auc_))

    precision = precision_score(eval_labels, pred_labels)
    print('Precision score: {0:0.2f}'.format(precision))

    recall = recall_score(eval_labels, pred_labels)
    print('Recall score: {0:0.2f}'.format(recall))

    f1 = f1_score(eval_labels, pred_labels)
    print('F1 score: {0:0.2f}'.format(f1))

    average_precision = average_precision_score(eval_labels, pred_labels)
    print('Average precision-recall score: {0:0.2f}'.format(average_precision))

    return auc_, precision, recall, f1, average_precision, fpr, tpr 
示例8
def compute_roc_auc_scores(y, y_pred):
  """Transforms the results dict into roc-auc-scores and prints scores.

  Parameters
  ----------
  results: dict
  task_types: dict
    dict mapping task names to output type. Each output type must be either
    "classification" or "regression".
  """
  try:
    score = roc_auc_score(y, y_pred)
  except ValueError:
    warnings.warn("ROC AUC score calculation failed.")
    score = 0.5
  return score 
示例9
def accuracy(y_true, y_pred):        
    # 计算混淆矩阵
    y = np.zeros(len(y_true))
    y_ = np.zeros(len(y_true))    
    for i in range(len(y_true)): 
        y[i] = np.argmax(y_true[i,:])
        y_[i] = np.argmax(y_pred[i,:])
    cnf_mat = confusion_matrix(y, y_)
    
    # Acc = 1.0*(cnf_mat[1][1]+cnf_mat[0][0])/len(y_true)
    # Sens = 1.0*cnf_mat[1][1]/(cnf_mat[1][1]+cnf_mat[1][0])
    # Spec = 1.0*cnf_mat[0][0]/(cnf_mat[0][0]+cnf_mat[0][1])
    
    # # 绘制ROC曲线
    # fpr, tpr, thresholds = roc_curve(y_true[:,0], y_pred[:,0])
    # Auc = auc(fpr, tpr)
    
    
    # 计算多分类评价值
    Sens = recall_score(y, y_, average='macro')
    Prec = precision_score(y, y_, average='macro')
    F1 = f1_score(y, y_, average='weighted') 
    Support = precision_recall_fscore_support(y, y_, beta=0.5, average=None)
    return Sens, Prec, F1, cnf_mat 
示例10
def compute_eer(loss_file,reverse,smoothing):
    if not os.path.isdir(loss_file):
        loss_file_list = [loss_file]
    else:
        loss_file_list = os.listdir(loss_file)
        loss_file_list = [os.path.join(loss_file, sub_loss_file) for sub_loss_file in loss_file_list]

    optimal_results = RecordResult(auc=np.inf)
    for sub_loss_file in loss_file_list:
        dataset, scores, labels = get_scores_labels(sub_loss_file,reverse,smoothing)
        fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=0)
        eer = cal_eer(fpr, tpr)

        results = RecordResult(fpr, tpr, eer, dataset, sub_loss_file)

        if optimal_results > results:
            optimal_results = results

        if os.path.isdir(loss_file):
            print(results)
    print('##### optimal result and model EER = {}'.format(optimal_results))
    return optimal_results 
示例11
def __call__(self, pos_triples, neg_triples=None):
        triples = pos_triples + neg_triples
        labels = [1 for _ in range(len(pos_triples))] + [0 for _ in range(len(neg_triples))]

        Xr, Xe = [], []
        for (s_idx, p_idx, o_idx), label in zip(triples, labels):
            Xr += [[p_idx]]
            Xe += [[s_idx, o_idx]]

        ascores = self.scoring_function([Xr, Xe])
        ays = np.array(labels)

        if self.rescale_predictions:
            diffs = np.diff(np.sort(ascores))
            min_diff = min(abs(diffs[np.nonzero(diffs)]))

            if min_diff < 1e-8:
                ascores = (ascores * (1e-7 / min_diff)).astype(np.float64)

        aucroc_value = metrics.roc_auc_score(ays, ascores)
        precision, recall, thresholds = metrics.precision_recall_curve(ays, ascores, pos_label=1)
        aucpr_value = metrics.auc(recall, precision)

        return aucroc_value, aucpr_value 
示例12
def test_auc():
    # Test Area Under Curve (AUC) computation
    x = [0, 1]
    y = [0, 1]
    assert_array_almost_equal(auc(x, y), 0.5)
    x = [1, 0]
    y = [0, 1]
    assert_array_almost_equal(auc(x, y), 0.5)
    x = [1, 0, 0]
    y = [0, 1, 1]
    assert_array_almost_equal(auc(x, y), 0.5)
    x = [0, 1]
    y = [1, 1]
    assert_array_almost_equal(auc(x, y), 1)
    x = [0, 0.5, 1]
    y = [0, 0.5, 1]
    assert_array_almost_equal(auc(x, y), 0.5) 
示例13
def test_auc_gold_labels_behaviour(self, device: str):
        # Check that it works with different pos_label
        auc = Auc(positive_label=4)

        predictions = torch.randn(8, device=device)
        labels = torch.randint(3, 5, (8,), dtype=torch.long, device=device)
        # We make sure that the positive label is always present.
        labels[0] = 4
        auc(predictions, labels)
        computed_auc_value = auc.get_metric(reset=True)

        false_positive_rates, true_positive_rates, _ = metrics.roc_curve(
            labels.cpu().numpy(), predictions.cpu().numpy(), pos_label=4
        )
        real_auc_value = metrics.auc(false_positive_rates, true_positive_rates)
        assert_allclose(real_auc_value, computed_auc_value)

        # Check that it errs on getting more than 2 labels.
        with pytest.raises(ConfigurationError) as _:
            labels = torch.tensor([3, 4, 5, 6, 7, 8, 9, 10], device=device)
            auc(predictions, labels) 
示例14
def compute_aupr(all_targets,all_predictions):
    aupr_array = []
    for i in range(all_targets.shape[1]):
        try:
            precision, recall, thresholds = metrics.precision_recall_curve(all_targets[:,i], all_predictions[:,i], pos_label=1)
            auPR = metrics.auc(recall,precision,reorder=True)
            if not math.isnan(auPR):
                aupr_array.append(numpy.nan_to_num(auPR))
        except: 
            pass
    
    aupr_array = numpy.array(aupr_array)
    mean_aupr = numpy.mean(aupr_array)
    median_aupr = numpy.median(aupr_array)
    var_aupr = numpy.var(aupr_array)
    return mean_aupr,median_aupr,var_aupr,aupr_array 
示例15
def _plot_macro_roc(fpr, tpr, n, lw, fmt, ax):
    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n)]))
    mean_tpr = np.zeros_like(all_fpr)
    for i in range(n):
        mean_tpr += interp(all_fpr, fpr[i], tpr[i])
    mean_tpr /= n
    fpr_macro = all_fpr
    tpr_macro = mean_tpr
    auc_macro = auc(fpr_macro, tpr_macro)
    label = 'ROC curve: macro (AUC = {auc:{fmt}})'.format(auc=auc_macro, fmt=fmt)
    ax.plot(fpr_macro,
            tpr_macro,
            label=label,
            color='navy',
            ls=':',
            lw=lw) 
示例16
def validate_on_lfw(model, lfw_160_path):
    # Read the file containing the pairs used for testing
    pairs = lfw.read_pairs('validation-LFW-pairs.txt')
    # Get the paths for the corresponding images
    paths, actual_issame = lfw.get_paths(lfw_160_path, pairs)
    num_pairs = len(actual_issame)

    all_embeddings = np.zeros((num_pairs * 2, 512), dtype='float32')
    for k in tqdm.trange(num_pairs):
        img1 = cv2.imread(paths[k * 2], cv2.IMREAD_COLOR)[:, :, ::-1]
        img2 = cv2.imread(paths[k * 2 + 1], cv2.IMREAD_COLOR)[:, :, ::-1]
        batch = np.stack([img1, img2], axis=0)
        embeddings = model.eval_embeddings(batch)
        all_embeddings[k * 2: k * 2 + 2, :] = embeddings

    tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
        all_embeddings, actual_issame, distance_metric=1, subtract_mean=True)

    print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
    print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))

    auc = metrics.auc(fpr, tpr)
    print('Area Under Curve (AUC): %1.3f' % auc)
    eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
    print('Equal Error Rate (EER): %1.3f' % eer) 
示例17
def get_pr_auc(pr_results, args, plot=False, plot_name=""):
    xys = [(0.0, 1.0, 0.)]
    labels = []
    for tau, result in pr_results.items():
        xys += [(pr_results[tau]["recall"], pr_results[tau]["prec"], tau)]
        labels += [tau]

    xys.sort(key=lambda x: x[0])
    xs = [i[0] for i in xys]
    ys = [i[1] for i in xys]

    # print("pr")
    # for i in sorted(xys, key=lambda x: x[-1]): print(i)

    # print("recall", xs)
    # print("precis", ys)
    _auc = auc(xs, ys)

    if plot:
        fig, ax = plt.subplots(nrows=1, ncols=1)
        ax.plot(xs, ys, 'go-',)

        for label, x, y in zip(labels, xs, ys):
            ax.annotate(
                label,
                xy=(x, y), xytext=(-20, 20),
                textcoords='offset points', ha='right', va='bottom',
                bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
                arrowprops=dict(arrowstyle = '->', connectionstyle='arc3,rad=0'))

        path = os.path.join(args.log_dir, "pr-{}.svg".format(plot_name))
        print("Storing PR plot in", path)
        fig.savefig(path)
        plt.close(fig)

    return _auc 
示例18
def get_roc_auc(pr_results, args, plot=False, plot_name=""):
    xys = [(0.0, 0.0, 0.0)]
    labels = []
    for tau, result in pr_results.items():
        xys += [(pr_results[tau]["fpr"], pr_results[tau]["tpr"], tau)]
        labels += [tau]

    xys.sort(key=lambda x: x[0])
    xs = [i[0] for i in xys]
    ys = [i[1] for i in xys]

    # print("roc")
    # for i in sorted(xys, key=lambda x: x[-1]): print(i)

    # print("fpr", xs)
    # print("tpr", ys)
    _auc = auc(xs, ys)

    if plot:
        fig, ax = plt.subplots(nrows=1, ncols=1)
        ax.plot(xs, ys, 'go-',)

        for label, x, y in zip(labels, xs, ys):
            ax.annotate(
                label,
                xy=(x, y), xytext=(-20, 20),
                textcoords='offset points', ha='right', va='bottom',
                bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
                arrowprops=dict(arrowstyle = '->', connectionstyle='arc3,rad=0'))

        path = os.path.join(args.log_dir, "roc-{}.svg".format(plot_name))
        print("Storing ROC plot in", path)
        fig.savefig(path)
        plt.close(fig)

    return _auc 
示例19
def print_metrics(test_word_arrayLabel, result_type):
    true_positives = 0
    false_negatives = 0
    false_positives = 0
    true_negatives = 0
    num_examples = len(test_word_arrayLabel)
    for example_num in range(0, num_examples):
        predicted_label = result_type[example_num]
        if test_word_arrayLabel[example_num] == 1:
            if predicted_label == 1:
                true_positives += 1
            elif predicted_label == 2:
                false_negatives += 1
        elif test_word_arrayLabel[example_num] == 2:
            if predicted_label == 1:
                false_positives += 1
            elif predicted_label == 2:
                true_negatives += 1
    TPR=true_positives/(true_positives+false_negatives)
    FPR=false_positives/(true_negatives+false_positives)
    return TPR,FPR


# def plotROCCurve(ROC_value):
#     fpr = dict()
#     tpr = dict()
#     roc_auc = dict()
#     for i in range(2):
#         fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
#         roc_auc[i] = auc(fpr[i], tpr[i])
#
#     # Compute micro-average ROC curve and ROC area
#     fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
#     roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) 
示例20
def average_precision_score(y_true, y_score, average="macro",
                            sample_weight=None):
    def _binary_average_precision(y_true, y_score, sample_weight=None):
        precision, recall, thresholds = precision_recall_curve(
            y_true, y_score, sample_weight=sample_weight)
        return auc(recall, precision)

    return _average_binary_score(_binary_average_precision, y_true, y_score,
                                 average, sample_weight=sample_weight) 
示例21
def roc(labels, scores, saveto=None):
    """Compute ROC curve and ROC area for each class"""
    fpr = dict()
    tpr = dict()
    roc_auc = dict()

    labels = labels.cpu()
    scores = scores.cpu()

    # True/False Positive Rates.
    fpr, tpr, _ = roc_curve(labels, scores)
    roc_auc = auc(fpr, tpr)

    # Equal Error Rate
    eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)

    if saveto:
        plt.figure()
        lw = 2
        plt.plot(fpr, tpr, color='darkorange', lw=lw, label='(AUC = %0.2f, EER = %0.2f)' % (roc_auc, eer))
        plt.plot([eer], [1-eer], marker='o', markersize=5, color="navy")
        plt.plot([0, 1], [1, 0], color='navy', lw=1, linestyle=':')
        plt.xlim([0.0, 1.0])
        plt.ylim([0.0, 1.05])
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title('Receiver operating characteristic')
        plt.legend(loc="lower right")
        plt.savefig(os.path.join(saveto, "ROC.pdf"))
        plt.close()

    return roc_auc 
示例22
def compute_roc(probs_neg, probs_pos):
    probs = np.concatenate((probs_neg, probs_pos))
    labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
    fpr, tpr, _ = roc_curve(labels, probs)
    auc_score = auc(fpr, tpr)

    return fpr, tpr, auc_score 
示例23
def calc_metrics(testy, scores):
    precision, recall, _ = precision_recall_curve(testy, scores)
    roc_auc = roc_auc_score(testy, scores)
    prc_auc = auc(recall, precision)

    return roc_auc, prc_auc 
示例24
def fit_model(self, data):
        eval_metrics = []
        if self.feature_type == 'fingerprints':
            fps = get_fp(data.smiles)
        elif self.feature_type == 'descriptors':
            fps, _, _ = get_desc(data.smiles, self.calc)
        if self.model_type == 'classifier':
            cross_val_data, cross_val_labels = \
                cross_validation_split(fps, data.binary_labels)
        elif self.model_type == 'regressor':
            cross_val_data, cross_val_labels = \
                cross_validation_split(fps, data.property)
        for i in range(self.n_ensemble):
            train_sm = np.concatenate(cross_val_data[:i] + cross_val_data[(i + 1):])
            test_sm = cross_val_data[i]
            train_labels = np.concatenate(cross_val_labels[:i] +
                                          cross_val_labels[(i + 1):])
            test_labels = cross_val_labels[i]
            if self.feature_type == 'descriptors':
                train_sm, desc_mean = normalize_desc(train_sm)
                self.desc_mean[i] = desc_mean
                test_sm, _ = normalize_desc(test_sm, desc_mean)
            self.model[i].fit(train_sm, train_labels.ravel())
            predicted = self.model[i].predict(test_sm)
            if self.model_type == 'classifier':
                fpr, tpr, thresholds = metrics.roc_curve(test_labels, predicted)
                eval_metrics.append(metrics.auc(fpr, tpr))
                metrics_type = 'AUC'
            elif self.model_type == 'regressor':
                r2 = metrics.r2_score(test_labels, predicted)
                eval_metrics.append(r2)
                metrics_type = 'R^2 score'

        return eval_metrics, metrics_type 
示例25
def get_metrics(predictions,targets):
    # Calculate metrics
    # Accuarcy
    acc = np.mean(np.equal(np.argmax(predictions,1),np.argmax(targets,1)))
    # Confusion matrix
    conf = confusion_matrix(np.argmax(targets,1),np.argmax(predictions,1))     
    # Class weighted accuracy
    wacc = conf.diagonal()/conf.sum(axis=1)  
    # Auc
    fpr = {}
    tpr = {}
    roc_auc = np.zeros([numClasses])
    for i in range(numClasses):
        fpr[i], tpr[i], _ = roc_curve(targets[:, i], predictions[:, i])
        roc_auc[i] = auc(fpr[i], tpr[i])       
    # F1 Score
    f1 = f1_score(np.argmax(predictions,1),np.argmax(targets,1),average='weighted')        
    # Print
    print("Accuracy:",acc)
    print("F1-Score:",f1)
    print("WACC:",wacc)
    print("Mean WACC:",np.mean(wacc))
    print("AUC:",roc_auc)
    print("Mean Auc:",np.mean(roc_auc))        
    return acc, f1, wacc, roc_auc

# If its actual evaluation, evaluate each CV indipendently, show results both for each CV set and all of them together 
示例26
def evalEnsemble(currComb,eval_auc=False):
        currWacc = np.zeros([cvSize])
        currAUC = np.zeros([cvSize])
        for i in range(cvSize):
            if evaluate_method == 'vote':
                pred_argmax = np.argmax(accum_preds[i][currComb,:,:],2)   
                pred_eval = np.zeros([pred_argmax.shape[1],numClasses]) 
                for j in range(pred_eval.shape[0]):
                    pred_eval[j,:] = np.bincount(pred_argmax[:,j],minlength=numClasses)  
            else:
                pred_eval = np.mean(accum_preds[i][currComb,:,:],0)
            # Confusion matrix
            conf = confusion_matrix(np.argmax(final_targets[i],1),np.argmax(pred_eval,1))     
            # Class weighted accuracy
            currWacc[i] = np.mean(conf.diagonal()/conf.sum(axis=1))   
            if eval_auc:
                currAUC_ = np.zeros([numClasses])
                for j in range(numClasses):
                    fpr, tpr, _ = roc_curve(final_targets[i][:,j], pred_eval[:, j])
                    currAUC_[j] = auc(fpr, tpr)
                currAUC[i] = np.mean(currAUC_)                
        if eval_auc:
            currAUCstd = np.std(currAUC)
            currAUC = np.mean(currAUC)
        else:
            currAUCstd = currAUC
        currWaccStd = np.std(currWacc)
        currWacc = np.mean(currWacc)
        if eval_auc:
            return currWacc, currWaccStd, currAUC, currAUCstd       
        else:
            return currWacc 
示例27
def prc_auc_score(y, y_pred):
  """Compute area under precision-recall curve"""
  if y.shape != y_pred.shape:
    y = _ensure_one_hot(y)
  assert y_pred.shape == y.shape
  assert y_pred.shape[1] == 2
  precision, recall, _ = precision_recall_curve(y[:, 1], y_pred[:, 1])
  return auc(recall, precision) 
示例28
def testLearnInLocalCluster(self, *_):
        from mars.learn.neighbors import NearestNeighbors
        from sklearn.neighbors import NearestNeighbors as SkNearestNeighbors
        from mars.learn.metrics import roc_curve, auc
        from sklearn.metrics import roc_curve as sklearn_roc_curve, auc as sklearn_auc

        with new_cluster(scheduler_n_process=2, worker_n_process=3, shared_memory='20M') as cluster:
            rs = np.random.RandomState(0)
            raw_X = rs.rand(10, 5)
            raw_Y = rs.rand(8, 5)

            X = mt.tensor(raw_X, chunk_size=7)
            Y = mt.tensor(raw_Y, chunk_size=(5, 3))
            nn = NearestNeighbors(n_neighbors=3)
            nn.fit(X)

            ret = nn.kneighbors(Y, session=cluster.session)

            snn = SkNearestNeighbors(n_neighbors=3)
            snn.fit(raw_X)
            expected = snn.kneighbors(raw_Y)

            result = [r.fetch() for r in ret]
            np.testing.assert_almost_equal(result[0], expected[0])
            np.testing.assert_almost_equal(result[1], expected[1])

            rs = np.random.RandomState(0)
            raw = pd.DataFrame({'a': rs.randint(0, 10, (10,)),
                                'b': rs.rand(10)})

            df = md.DataFrame(raw)
            y = df['a'].to_tensor().astype('int')
            pred = df['b'].to_tensor().astype('float')
            fpr, tpr, thresholds = roc_curve(y, pred, pos_label=2)
            m = auc(fpr, tpr)

            sk_fpr, sk_tpr, sk_threshod = sklearn_roc_curve(raw['a'].to_numpy().astype('int'),
                                                            raw['b'].to_numpy().astype('float'),
                                                            pos_label=2)
            expect_m = sklearn_auc(sk_fpr, sk_tpr)
            self.assertAlmostEqual(m.fetch(), expect_m) 
示例29
def plot_ROC(y_true, y_preds, num_classes, labels, micro=True, macro=True):
    # Compute ROC curve and ROC area for each class
    fpr = dict()
    tpr = dict()
    roc_auc = dict()
    for i in range(num_classes):
        fpr[i], tpr[i], _ = metrics.roc_curve(y_true[:, i], y_preds[:, i])
        roc_auc[i] = metrics.auc(fpr[i], tpr[i])
    if micro:
        # Compute micro-average ROC curve and ROC area
        fpr["micro"], tpr["micro"], _ = metrics.roc_curve(y_true.ravel(), y_preds.ravel())
        roc_auc["micro"] = metrics.auc(fpr["micro"], tpr["micro"])
    if macro:
        # Compute macro-average ROC curve and ROC area
        # First aggregate all false positive rates
        all_fpr = np.unique(np.concatenate([fpr[i] for i in range(num_classes)]))
        # Then interpolate all ROC curves at this points
        mean_tpr = np.zeros_like(all_fpr)
        for i in range(num_classes):
            mean_tpr += interp(all_fpr, fpr[i], tpr[i])
        # Finally average it and compute AUC
        mean_tpr /= num_classes
        fpr["macro"] = all_fpr
        tpr["macro"] = mean_tpr
        roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"])
    for i in range(num_classes):
        plot_class_ROC(fpr, tpr, roc_auc, i, labels)
    plot_multi_ROC(fpr, tpr, roc_auc, num_classes, labels, micro, macro) 
示例30
def prc_auc_score(y, y_pred):
  """Compute area under precision-recall curve"""
  assert y_pred.shape == y.shape
  assert y_pred.shape[1] == 2
  precision, recall, _ = precision_recall_curve(y[:, 1], y_pred[:, 1])
  return auc(recall, precision)