Python源码示例:sklearn.decomposition.MiniBatchDictionaryLearning()

示例1
def test_dict_learning_online_verbosity():
    n_components = 5
    # test verbosity
    from io import StringIO
    import sys

    old_stdout = sys.stdout
    try:
        sys.stdout = StringIO()
        dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1,
                                           random_state=0)
        dico.fit(X)
        dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2,
                                           random_state=0)
        dico.fit(X)
        dict_learning_online(X, n_components=n_components, alpha=1, verbose=1,
                             random_state=0)
        dict_learning_online(X, n_components=n_components, alpha=1, verbose=2,
                             random_state=0)
    finally:
        sys.stdout = old_stdout

    assert dico.components_.shape == (n_components, n_features) 
示例2
def test_dict_learning_online_partial_fit():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
    dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X),
                                        batch_size=1,
                                        alpha=1, shuffle=False, dict_init=V,
                                        random_state=0).fit(X)
    dict2 = MiniBatchDictionaryLearning(n_components, alpha=1,
                                        n_iter=1, dict_init=V,
                                        random_state=0)
    for i in range(10):
        for sample in X:
            dict2.partial_fit(sample[np.newaxis, :])

    assert not np.all(sparse_encode(X, dict1.components_, alpha=1) == 0)
    assert_array_almost_equal(dict1.components_, dict2.components_,
                              decimal=2) 
示例3
def learn_dictionary_mini(patches, n_c=512, a=1, n_i=800, n_j=3, b_s=3, es=5, fit_algorithm='lars'):
    """
    patches  - patches to learn on (should be normalized before)
    n_c - number of components (atoms) e.g. 512
    a   - alpha sparsity controlling parameter
    n_i - total number of iterations to perform
    b_s - batch size: number of samples in each mini-batch
    fit_algorithm - {‘lars’, ‘cd’}
    n_j - number of parallel jobs to run (number of threads)
    e_s - size of each element in the dictionary
    """
    dic = MiniBatchDictionaryLearning(n_components=n_c, alpha=a, n_iter=n_i,
                                      n_jobs=n_j, batch_size=b_s, fit_algorithm=fit_algorithm)
    print ("Start learning dictionary_mini: n_c: "+str(n_c)+", alpha: "+str(a)+", n_i: " +
           str(n_i)+", n_j: "+str(n_j)+", es: "+str(es)+", b_s: "+str(b_s))
    v1 = dic.fit(patches).components_
    d1 = v1.reshape(n_c, es, es, es)  # e.g. 512x5x5x5
    return d1 
示例4
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.decomposition.PCA, decomposition.PCA)
        self.assertIs(df.decomposition.IncrementalPCA,
                      decomposition.IncrementalPCA)
        self.assertIs(df.decomposition.KernelPCA, decomposition.KernelPCA)
        self.assertIs(df.decomposition.FactorAnalysis,
                      decomposition.FactorAnalysis)
        self.assertIs(df.decomposition.FastICA, decomposition.FastICA)
        self.assertIs(df.decomposition.TruncatedSVD, decomposition.TruncatedSVD)
        self.assertIs(df.decomposition.NMF, decomposition.NMF)
        self.assertIs(df.decomposition.SparsePCA, decomposition.SparsePCA)
        self.assertIs(df.decomposition.MiniBatchSparsePCA,
                      decomposition.MiniBatchSparsePCA)
        self.assertIs(df.decomposition.SparseCoder, decomposition.SparseCoder)
        self.assertIs(df.decomposition.DictionaryLearning,
                      decomposition.DictionaryLearning)
        self.assertIs(df.decomposition.MiniBatchDictionaryLearning,
                      decomposition.MiniBatchDictionaryLearning)

        self.assertIs(df.decomposition.LatentDirichletAllocation,
                      decomposition.LatentDirichletAllocation) 
示例5
def test_dict_learning_online_verbosity():
    n_components = 5
    # test verbosity
    from sklearn.externals.six.moves import cStringIO as StringIO
    import sys

    old_stdout = sys.stdout
    try:
        sys.stdout = StringIO()
        dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=1,
                                           random_state=0)
        dico.fit(X)
        dico = MiniBatchDictionaryLearning(n_components, n_iter=20, verbose=2,
                                           random_state=0)
        dico.fit(X)
        dict_learning_online(X, n_components=n_components, alpha=1, verbose=1,
                             random_state=0)
        dict_learning_online(X, n_components=n_components, alpha=1, verbose=2,
                             random_state=0)
    finally:
        sys.stdout = old_stdout

    assert_true(dico.components_.shape == (n_components, n_features)) 
示例6
def test_dict_learning_online_partial_fit():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)  # random init
    V /= np.sum(V ** 2, axis=1)[:, np.newaxis]
    dict1 = MiniBatchDictionaryLearning(n_components, n_iter=10 * len(X),
                                        batch_size=1,
                                        alpha=1, shuffle=False, dict_init=V,
                                        random_state=0).fit(X)
    dict2 = MiniBatchDictionaryLearning(n_components, alpha=1,
                                        n_iter=1, dict_init=V,
                                        random_state=0)
    for i in range(10):
        for sample in X:
            dict2.partial_fit(sample[np.newaxis, :])

    assert_true(not np.all(sparse_encode(X, dict1.components_, alpha=1) ==
                           0))
    assert_array_almost_equal(dict1.components_, dict2.components_,
                              decimal=2) 
示例7
def test_dict_learning_online_positivity(transform_algorithm,
                                         positive_code,
                                         positive_dict):
    rng = np.random.RandomState(0)
    n_components = 8

    dico = MiniBatchDictionaryLearning(
        n_components, transform_algorithm=transform_algorithm, random_state=0,
        positive_code=positive_code, positive_dict=positive_dict).fit(X)
    code = dico.transform(X)
    if positive_dict:
        assert (dico.components_ >= 0).all()
    else:
        assert (dico.components_ < 0).any()
    if positive_code:
        assert (code >= 0).all()
    else:
        assert (code < 0).any()

    code, dictionary = dict_learning_online(X, n_components=n_components,
                                            alpha=1, random_state=rng,
                                            positive_dict=positive_dict,
                                            positive_code=positive_code)
    if positive_dict:
        assert (dictionary >= 0).all()
    else:
        assert (dictionary < 0).any()
    if positive_code:
        assert (code >= 0).all()
    else:
        assert (code < 0).any() 
示例8
def test_dict_learning_online_estimator_shapes():
    n_components = 5
    dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0)
    dico.fit(X)
    assert dico.components_.shape == (n_components, n_features) 
示例9
def test_dict_learning_online_overcomplete():
    n_components = 12
    dico = MiniBatchDictionaryLearning(n_components, n_iter=20,
                                       random_state=0).fit(X)
    assert dico.components_.shape == (n_components, n_features) 
示例10
def test_dict_learning_online_initialization():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)
    dico = MiniBatchDictionaryLearning(n_components, n_iter=0,
                                       dict_init=V, random_state=0).fit(X)
    assert_array_equal(dico.components_, V) 
示例11
def learn_dictionary(X, n_filters, filter_size, n_sample=1000,
                     n_sample_patches=0, **kwargs):
    """
    learn a dictionary of n_filters atoms from n_sample images from X
    """

    n_channels = X.shape[1]

    # subsample n_sample images randomly
    rand_idx = np.random.choice(len(X), n_sample, replace=False)

    # extract patches
    patch_size = (filter_size, filter_size)
    patches = PatchExtractor(patch_size).transform(
        X[rand_idx, ...].reshape(n_sample, X.shape[2], X.shape[3], X.shape[1]))
    patches = patches.reshape(patches.shape[0], -1)
    patches -= np.mean(patches, axis=0)
    patches /= np.std(patches, axis=0)

    if n_sample_patches > 0 and (n_sample_patches < len(patches)):
        np.random.shuffle(patches)
        patches = patches[:n_sample_patches, ...]

    # learn dictionary
    print('Learning dictionary for weight initialization...')

    dico = MiniBatchDictionaryLearning(n_components=n_filters, alpha=1, n_iter=1000, batch_size=10, shuffle=True,
                                       verbose=True, **kwargs)
    W = dico.fit(patches).components_
    W = W.reshape(n_filters, n_channels, filter_size, filter_size)

    print('Dictionary learned.')

    return W.astype(np.float32) 
示例12
def test_dict_learning_online_estimator_shapes():
    n_components = 5
    dico = MiniBatchDictionaryLearning(n_components, n_iter=20, random_state=0)
    dico.fit(X)
    assert_true(dico.components_.shape == (n_components, n_features)) 
示例13
def test_dict_learning_online_overcomplete():
    n_components = 12
    dico = MiniBatchDictionaryLearning(n_components, n_iter=20,
                                       random_state=0).fit(X)
    assert_true(dico.components_.shape == (n_components, n_features)) 
示例14
def test_dict_learning_online_initialization():
    n_components = 12
    rng = np.random.RandomState(0)
    V = rng.randn(n_components, n_features)
    dico = MiniBatchDictionaryLearning(n_components, n_iter=0,
                                       dict_init=V, random_state=0).fit(X)
    assert_array_equal(dico.components_, V)