Python源码示例:sklearn.decomposition.DictionaryLearning()
示例1
def test_size():
np.random.seed(0)
N = 50
L = 12
n_features = 16
D = np.random.randn(L, n_features)
B = np.array(sp.sparse.random(N, L, density=0.5).todense())
X = np.dot(B, D)
dico1 = ApproximateKSVD(n_components=L, transform_n_nonzero_coefs=L)
dico1.fit(X)
gamma1 = dico1.transform(X)
e1 = norm(X - gamma1.dot(dico1.components_))
dico2 = DictionaryLearning(n_components=L, transform_n_nonzero_coefs=L)
dico2.fit(X)
gamma2 = dico2.transform(X)
e2 = norm(X - gamma2.dot(dico2.components_))
assert dico1.components_.shape == dico2.components_.shape
assert gamma1.shape == gamma2.shape
assert e1 < e2
示例2
def test_dict_learning_positivity(transform_algorithm,
positive_code,
positive_dict):
n_components = 5
dico = DictionaryLearning(
n_components, transform_algorithm=transform_algorithm, random_state=0,
positive_code=positive_code, positive_dict=positive_dict).fit(X)
code = dico.transform(X)
if positive_dict:
assert (dico.components_ >= 0).all()
else:
assert (dico.components_ < 0).any()
if positive_code:
assert (code >= 0).all()
else:
assert (code < 0).any()
示例3
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.decomposition.PCA, decomposition.PCA)
self.assertIs(df.decomposition.IncrementalPCA,
decomposition.IncrementalPCA)
self.assertIs(df.decomposition.KernelPCA, decomposition.KernelPCA)
self.assertIs(df.decomposition.FactorAnalysis,
decomposition.FactorAnalysis)
self.assertIs(df.decomposition.FastICA, decomposition.FastICA)
self.assertIs(df.decomposition.TruncatedSVD, decomposition.TruncatedSVD)
self.assertIs(df.decomposition.NMF, decomposition.NMF)
self.assertIs(df.decomposition.SparsePCA, decomposition.SparsePCA)
self.assertIs(df.decomposition.MiniBatchSparsePCA,
decomposition.MiniBatchSparsePCA)
self.assertIs(df.decomposition.SparseCoder, decomposition.SparseCoder)
self.assertIs(df.decomposition.DictionaryLearning,
decomposition.DictionaryLearning)
self.assertIs(df.decomposition.MiniBatchDictionaryLearning,
decomposition.MiniBatchDictionaryLearning)
self.assertIs(df.decomposition.LatentDirichletAllocation,
decomposition.LatentDirichletAllocation)
示例4
def test_dict_learning_shapes():
n_components = 5
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert_equal(dico.components_.shape, (n_components, n_features))
n_components = 1
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert_equal(dico.components_.shape, (n_components, n_features))
assert_equal(dico.transform(X).shape, (X.shape[0], n_components))
示例5
def test_dict_learning_overcomplete():
n_components = 12
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert dico.components_.shape == (n_components, n_features)
# positive lars deprecated 0.22
示例6
def test_dict_learning_reconstruction():
n_components = 12
dico = DictionaryLearning(n_components, transform_algorithm='omp',
transform_alpha=0.001, random_state=0)
code = dico.fit(X).transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X)
dico.set_params(transform_algorithm='lasso_lars')
code = dico.transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
# used to test lars here too, but there's no guarantee the number of
# nonzero atoms is right.
示例7
def test_dict_learning_reconstruction_parallel():
# regression test that parallel reconstruction works with n_jobs>1
n_components = 12
dico = DictionaryLearning(n_components, transform_algorithm='omp',
transform_alpha=0.001, random_state=0, n_jobs=4)
code = dico.fit(X).transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X)
dico.set_params(transform_algorithm='lasso_lars')
code = dico.transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
示例8
def test_dict_learning_nonzero_coefs():
n_components = 4
dico = DictionaryLearning(n_components, transform_algorithm='lars',
transform_n_nonzero_coefs=3, random_state=0)
code = dico.fit(X).transform(X[np.newaxis, 1])
assert len(np.flatnonzero(code)) == 3
dico.set_params(transform_algorithm='omp')
code = dico.transform(X[np.newaxis, 1])
assert_equal(len(np.flatnonzero(code)), 3)
示例9
def test_dict_learning_unknown_fit_algorithm():
n_components = 5
dico = DictionaryLearning(n_components, fit_algorithm='<unknown>')
assert_raises(ValueError, dico.fit, X)
示例10
def test_dict_learning_split():
n_components = 5
dico = DictionaryLearning(n_components, transform_algorithm='threshold',
random_state=0)
code = dico.fit(X).transform(X)
dico.split_sign = True
split_code = dico.transform(X)
assert_array_almost_equal(split_code[:, :n_components] -
split_code[:, n_components:], code)
示例11
def learn_dictionary(patches, n_c=512, a=1, n_i=100, n_j=3, es=5, fit_algorithm='lars'):
dic = DictionaryLearning(n_components=n_c, alpha=a, max_iter=n_i,
n_jobs=n_j, fit_algorithm=fit_algorithm)
print ("Start learning dictionary: n_c: "+str(n_c)+", alpha: "+str(a)+", n_i: " +
str(n_i)+", es: "+str(es)+", n_j: "+str(n_j))
v2 = dic.fit(patches).components_
d2 = v2.reshape(n_c, es, es, es) # e.g. 512x5x5x5
return d2
示例12
def test_dict_learning_shapes():
n_components = 5
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert_equal(dico.components_.shape, (n_components, n_features))
n_components = 1
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert_equal(dico.components_.shape, (n_components, n_features))
assert_equal(dico.transform(X).shape, (X.shape[0], n_components))
示例13
def test_dict_learning_overcomplete():
n_components = 12
dico = DictionaryLearning(n_components, random_state=0).fit(X)
assert_true(dico.components_.shape == (n_components, n_features))
示例14
def test_dict_learning_reconstruction():
n_components = 12
dico = DictionaryLearning(n_components, transform_algorithm='omp',
transform_alpha=0.001, random_state=0)
code = dico.fit(X).transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X)
dico.set_params(transform_algorithm='lasso_lars')
code = dico.transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
# used to test lars here too, but there's no guarantee the number of
# nonzero atoms is right.
示例15
def test_dict_learning_reconstruction_parallel():
# regression test that parallel reconstruction works with n_jobs=-1
n_components = 12
dico = DictionaryLearning(n_components, transform_algorithm='omp',
transform_alpha=0.001, random_state=0, n_jobs=-1)
code = dico.fit(X).transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X)
dico.set_params(transform_algorithm='lasso_lars')
code = dico.transform(X)
assert_array_almost_equal(np.dot(code, dico.components_), X, decimal=2)
示例16
def test_dict_learning_lassocd_readonly_data():
n_components = 12
with TempMemmap(X) as X_read_only:
dico = DictionaryLearning(n_components, transform_algorithm='lasso_cd',
transform_alpha=0.001, random_state=0,
n_jobs=-1)
with ignore_warnings(category=ConvergenceWarning):
code = dico.fit(X_read_only).transform(X_read_only)
assert_array_almost_equal(np.dot(code, dico.components_), X_read_only,
decimal=2)
示例17
def test_dict_learning_unknown_fit_algorithm():
n_components = 5
dico = DictionaryLearning(n_components, fit_algorithm='<unknown>')
assert_raises(ValueError, dico.fit, X)
示例18
def test_dict_learning_split():
n_components = 5
dico = DictionaryLearning(n_components, transform_algorithm='threshold',
random_state=0)
code = dico.fit(X).transform(X)
dico.split_sign = True
split_code = dico.transform(X)
assert_array_equal(split_code[:, :n_components] -
split_code[:, n_components:], code)