Java源码示例:weka.classifiers.functions.Logistic

示例1
public void buildRegression(){	
	logReg = new Logistic();

	try {
		logReg.buildClassifier(iris);
	} catch (Exception e) {
	} 
	System.out.println(logReg);
}
 
示例2
/**
 * Initializes the CAWPE ensemble model consisting of five classifiers (SMO,
 * KNN, J48, Logistic and MLP) using a majority voting strategy. The ensemble
 * uses Weka classifiers. It refers to "Heterogeneous ensemble of standard
 * classification algorithms" (HESCA) as described in Lines, Jason & Taylor,
 * Sarah & Bagnall, Anthony. (2018). Time Series Classification with HIVE-COTE:
 * The Hierarchical Vote Collective of Transformation-Based Ensembles. ACM
 * Transactions on Knowledge Discovery from Data. 12. 1-35. 10.1145/3182382.
 *
 * @param seed
 *            Seed used within the classifiers and the majority confidence
 *            voting scheme
 * @param numFolds
 *            Number of folds used within the determination of the classifier
 *            weights for the {@link MajorityConfidenceVote}
 * @return Returns an initialized (but untrained) ensemble model.
 * @throws Exception
 *             Thrown when the initialization has failed
 */
public static Classifier provideCAWPEEnsembleModel(final int seed, final int numFolds) throws Exception {
	Classifier[] classifiers = new Classifier[5];

	Vote voter = new MajorityConfidenceVote(numFolds, seed);

	SMO smo = new SMO();
	smo.turnChecksOff();
	smo.setBuildCalibrationModels(true);
	PolyKernel kl = new PolyKernel();
	kl.setExponent(1);
	smo.setKernel(kl);
	smo.setRandomSeed(seed);
	classifiers[0] = smo;

	IBk k = new IBk(100);
	k.setCrossValidate(true);
	EuclideanDistance ed = new EuclideanDistance();
	ed.setDontNormalize(true);
	k.getNearestNeighbourSearchAlgorithm().setDistanceFunction(ed);
	classifiers[1] = k;

	J48 c45 = new J48();
	c45.setSeed(seed);
	classifiers[2] = c45;

	classifiers[3] = new Logistic();

	classifiers[4] = new MultilayerPerceptron();

	voter.setClassifiers(classifiers);
	return voter;
}
 
示例3
public void testThreshold() {
	BaggingML h = new BaggingML();
	CC cc = new CC();
	cc.setClassifier(new Logistic());
	h.setClassifier(cc);
	Result r = EvaluationTests.cvEvaluateClassifier(h,"0.5");
	assertTrue("PCutL Thresholds OK?", r.info.get("Threshold").equals("[0.4, 0.4, 0.4, 0.4, 0.6, 0.6]") );
}
 
示例4
/**
 * Uses the 'basic UCI' set up:
 * Comps: SVML, MLP, NN, Logistic, C4.5
 * Weight: TrainAcc(4) (train accuracies to the power 4)
 * Vote: MajorityConfidence (summing probability distributions)
 */
@Override //Abstract Ensemble 
public final void setupDefaultEnsembleSettings() {
    this.ensembleName = "CAWPE";
    
    this.weightingScheme = new TrainAcc(4);
    this.votingScheme = new MajorityConfidence();
    this.transform = null;
    
    CrossValidationEvaluator cv = new CrossValidationEvaluator(seed, false, false, false, false); 
    cv.setNumFolds(10);
    this.trainEstimator = cv; 

    Classifier[] classifiers = new Classifier[5];
    String[] classifierNames = new String[5];

    SMO smo = new SMO();
    smo.turnChecksOff();
    smo.setBuildLogisticModels(true);
    PolyKernel kl = new PolyKernel();
    kl.setExponent(1);
    smo.setKernel(kl);
    smo.setRandomSeed(seed);
    classifiers[0] = smo;
    classifierNames[0] = "SVML";

    kNN k=new kNN(100);
    k.setCrossValidate(true);
    k.normalise(false);
    k.setDistanceFunction(new EuclideanDistance());
    classifiers[1] = k;
    classifierNames[1] = "NN";

    classifiers[2] = new J48();
    classifierNames[2] = "C4.5";

    classifiers[3] = new Logistic();
    classifierNames[3] = "Logistic";

    classifiers[4] = new MultilayerPerceptron();
    classifierNames[4] = "MLP";
    
    setClassifiers(classifiers, classifierNames, null);
}