Java源码示例:org.apache.commons.math3.exception.NonMonotonicSequenceException
示例1
/**
* Compute an interpolating function by performing a loess fit
* on the data at the original abscissae and then building a cubic spline
* with a
* {@link org.apache.commons.math3.analysis.interpolation.SplineInterpolator}
* on the resulting fit.
*
* @param xval the arguments for the interpolation points
* @param yval the values for the interpolation points
* @return A cubic spline built upon a loess fit to the data at the original abscissae
* @throws NonMonotonicSequenceException if {@code xval} not sorted in
* strictly increasing order.
* @throws DimensionMismatchException if {@code xval} and {@code yval} have
* different sizes.
* @throws NoDataException if {@code xval} or {@code yval} has zero size.
* @throws NotFiniteNumberException if any of the arguments and values are
* not finite real numbers.
* @throws NumberIsTooSmallException if the bandwidth is too small to
* accomodate the size of the input data (i.e. the bandwidth must be
* larger than 2/n).
*/
public final PolynomialSplineFunction interpolate(double[] xval,
double[] yval)
throws NonMonotonicSequenceException,
DimensionMismatchException,
NoDataException,
NotFiniteNumberException,
NumberIsTooSmallException {
double[] smoothed = smooth(xval, yval);
DoubleList newX = new ArrayDoubleList();
DoubleList newSmoothed = new ArrayDoubleList();
newX.add(xval[0]);
newSmoothed.add(smoothed[0]);
for(int i = 1; i < xval.length; i++){
if(xval[i] != xval[i-1]){
newX.add(xval[i]);
newSmoothed.add(smoothed[i]);
}
}
xval = newX.toArray();
smoothed = newSmoothed.toArray();
return new SplineInterpolator().interpolate(xval, smoothed);
}
示例2
/**
* Test of parameters for the interpolator.
*/
@Test
public void testParameters() {
UnivariateInterpolator interpolator = new DividedDifferenceInterpolator();
try {
// bad abscissas array
double x[] = { 1.0, 2.0, 2.0, 4.0 };
double y[] = { 0.0, 4.0, 4.0, 2.5 };
UnivariateFunction p = interpolator.interpolate(x, y);
p.value(0.0);
Assert.fail("Expecting NonMonotonicSequenceException - bad abscissas array");
} catch (NonMonotonicSequenceException ex) {
// expected
}
}
示例3
/**
* Test of parameters for the interpolator.
*/
@Test
public void testParameters() {
UnivariateInterpolator interpolator = new DividedDifferenceInterpolator();
try {
// bad abscissas array
double x[] = { 1.0, 2.0, 2.0, 4.0 };
double y[] = { 0.0, 4.0, 4.0, 2.5 };
UnivariateFunction p = interpolator.interpolate(x, y);
p.value(0.0);
Assert.fail("Expecting NonMonotonicSequenceException - bad abscissas array");
} catch (NonMonotonicSequenceException ex) {
// expected
}
}
示例4
/**
* Construct a polynomial spline function with the given segment delimiters
* and interpolating polynomials.
* The constructor copies both arrays and assigns the copies to the knots
* and polynomials properties, respectively.
*
* @param knots Spline segment interval delimiters.
* @param polynomials Polynomial functions that make up the spline.
* @throws NullArgumentException if either of the input arrays is {@code null}.
* @throws NumberIsTooSmallException if knots has length less than 2.
* @throws DimensionMismatchException if {@code polynomials.length != knots.length - 1}.
* @throws NonMonotonicSequenceException if the {@code knots} array is not strictly increasing.
*
*/
public PolynomialSplineFunction(double knots[], PolynomialFunction polynomials[])
throws NullArgumentException, NumberIsTooSmallException,
DimensionMismatchException, NonMonotonicSequenceException{
if (knots == null ||
polynomials == null) {
throw new NullArgumentException();
}
if (knots.length < 2) {
throw new NumberIsTooSmallException(LocalizedFormats.NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION,
2, knots.length, false);
}
if (knots.length - 1 != polynomials.length) {
throw new DimensionMismatchException(polynomials.length, knots.length);
}
MathArrays.checkOrder(knots);
this.n = knots.length -1;
this.knots = new double[n + 1];
System.arraycopy(knots, 0, this.knots, 0, n + 1);
this.polynomials = new PolynomialFunction[n];
System.arraycopy(polynomials, 0, this.polynomials, 0, n);
}
示例5
/**
* Construct a polynomial spline function with the given segment delimiters
* and interpolating polynomials.
* The constructor copies both arrays and assigns the copies to the knots
* and polynomials properties, respectively.
*
* @param knots Spline segment interval delimiters.
* @param polynomials Polynomial functions that make up the spline.
* @throws NullArgumentException if either of the input arrays is {@code null}.
* @throws NumberIsTooSmallException if knots has length less than 2.
* @throws DimensionMismatchException if {@code polynomials.length != knots.length - 1}.
* @throws NonMonotonicSequenceException if the {@code knots} array is not strictly increasing.
*
*/
public PolynomialSplineFunction(double knots[], PolynomialFunction polynomials[])
throws NullArgumentException, NumberIsTooSmallException,
DimensionMismatchException, NonMonotonicSequenceException{
if (knots == null ||
polynomials == null) {
throw new NullArgumentException();
}
if (knots.length < 2) {
throw new NumberIsTooSmallException(LocalizedFormats.NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION,
2, knots.length, false);
}
if (knots.length - 1 != polynomials.length) {
throw new DimensionMismatchException(polynomials.length, knots.length);
}
MathArrays.checkOrder(knots);
this.n = knots.length -1;
this.knots = new double[n + 1];
System.arraycopy(knots, 0, this.knots, 0, n + 1);
this.polynomials = new PolynomialFunction[n];
System.arraycopy(polynomials, 0, this.polynomials, 0, n);
}
示例6
/**
* Compute an interpolating function for the dataset.
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a function which interpolates the dataset.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException if {@code x} is not sorted in
* strictly increasing order.
*/
public PolynomialFunctionNewtonForm interpolate(double x[], double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
*/
final double[] c = new double[x.length-1];
System.arraycopy(x, 0, c, 0, c.length);
final double[] a = computeDividedDifference(x, y);
return new PolynomialFunctionNewtonForm(a, c);
}
示例7
/**
* {@inheritDoc}
*/
public PiecewiseBicubicSplineInterpolatingFunction interpolate( final double[] xval,
final double[] yval,
final double[][] fval)
throws DimensionMismatchException,
NullArgumentException,
NoDataException,
NonMonotonicSequenceException {
if ( xval == null ||
yval == null ||
fval == null ||
fval[0] == null ) {
throw new NullArgumentException();
}
if ( xval.length == 0 ||
yval.length == 0 ||
fval.length == 0 ) {
throw new NoDataException();
}
MathArrays.checkOrder(xval);
MathArrays.checkOrder(yval);
return new PiecewiseBicubicSplineInterpolatingFunction( xval, yval, fval );
}
示例8
/**
* Evaluate the Lagrange polynomial using
* <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
* Neville's Algorithm</a>. It takes O(n^2) time.
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @param z Point at which the function value is to be computed.
* @return the function value.
* @throws DimensionMismatchException if {@code x} and {@code y} have
* different lengths.
* @throws NonMonotonicSequenceException
* if {@code x} is not sorted in strictly increasing order.
* @throws NumberIsTooSmallException if the size of {@code x} is less
* than 2.
*/
public static double evaluate(double x[], double y[], double z)
throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
if (verifyInterpolationArray(x, y, false)) {
return evaluateInternal(x, y, z);
}
// Array is not sorted.
final double[] xNew = new double[x.length];
final double[] yNew = new double[y.length];
System.arraycopy(x, 0, xNew, 0, x.length);
System.arraycopy(y, 0, yNew, 0, y.length);
MathArrays.sortInPlace(xNew, yNew);
// Second check in case some abscissa is duplicated.
verifyInterpolationArray(xNew, yNew, true);
return evaluateInternal(xNew, yNew, z);
}
示例9
/**
* Compute an interpolating function for the dataset.
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a function which interpolates the dataset.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException if {@code x} is not sorted in
* strictly increasing order.
*/
public PolynomialFunctionNewtonForm interpolate(double x[], double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
*/
final double[] c = new double[x.length-1];
System.arraycopy(x, 0, c, 0, c.length);
final double[] a = computeDividedDifference(x, y);
return new PolynomialFunctionNewtonForm(a, c);
}
示例10
/**
* Evaluate the Lagrange polynomial using
* <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
* Neville's Algorithm</a>. It takes O(n^2) time.
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @param z Point at which the function value is to be computed.
* @return the function value.
* @throws DimensionMismatchException if {@code x} and {@code y} have
* different lengths.
* @throws NonMonotonicSequenceException
* if {@code x} is not sorted in strictly increasing order.
* @throws NumberIsTooSmallException if the size of {@code x} is less
* than 2.
*/
public static double evaluate(double x[], double y[], double z)
throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
if (verifyInterpolationArray(x, y, false)) {
return evaluateInternal(x, y, z);
}
// Array is not sorted.
final double[] xNew = new double[x.length];
final double[] yNew = new double[y.length];
System.arraycopy(x, 0, xNew, 0, x.length);
System.arraycopy(y, 0, yNew, 0, y.length);
MathArrays.sortInPlace(xNew, yNew);
// Second check in case some abscissa is duplicated.
verifyInterpolationArray(xNew, yNew, true);
return evaluateInternal(xNew, yNew, z);
}
示例11
/**
* Builds a step function from a list of arguments and the corresponding
* values. Specifically, returns the function h(x) defined by <pre><code>
* h(x) = y[0] for all x < x[1]
* y[1] for x[1] <= x < x[2]
* ...
* y[y.length - 1] for x >= x[x.length - 1]
* </code></pre>
* The value of {@code x[0]} is ignored, but it must be strictly less than
* {@code x[1]}.
*
* @param x Domain values where the function changes value.
* @param y Values of the function.
* @throws NonMonotonicSequenceException
* if the {@code x} array is not sorted in strictly increasing order.
* @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
* @throws NoDataException if {@code x} or {@code y} are zero-length.
* @throws DimensionMismatchException if {@code x} and {@code y} do not
* have the same length.
*/
public StepFunction(double[] x,
double[] y)
throws NullArgumentException, NoDataException,
DimensionMismatchException, NonMonotonicSequenceException {
if (x == null ||
y == null) {
throw new NullArgumentException();
}
if (x.length == 0 ||
y.length == 0) {
throw new NoDataException();
}
if (y.length != x.length) {
throw new DimensionMismatchException(y.length, x.length);
}
MathArrays.checkOrder(x);
abscissa = MathArrays.copyOf(x);
ordinate = MathArrays.copyOf(y);
}
示例12
/**
* Construct a polynomial spline function with the given segment delimiters
* and interpolating polynomials.
* The constructor copies both arrays and assigns the copies to the knots
* and polynomials properties, respectively.
*
* @param knots Spline segment interval delimiters.
* @param polynomials Polynomial functions that make up the spline.
* @throws NullArgumentException if either of the input arrays is {@code null}.
* @throws NumberIsTooSmallException if knots has length less than 2.
* @throws DimensionMismatchException if {@code polynomials.length != knots.length - 1}.
* @throws NonMonotonicSequenceException if the {@code knots} array is not strictly increasing.
*
*/
public PolynomialSplineFunction(double knots[], PolynomialFunction polynomials[])
throws NullArgumentException, NumberIsTooSmallException,
DimensionMismatchException, NonMonotonicSequenceException{
if (knots == null ||
polynomials == null) {
throw new NullArgumentException();
}
if (knots.length < 2) {
throw new NumberIsTooSmallException(LocalizedFormats.NOT_ENOUGH_POINTS_IN_SPLINE_PARTITION,
2, knots.length, false);
}
if (knots.length - 1 != polynomials.length) {
throw new DimensionMismatchException(polynomials.length, knots.length);
}
MathArrays.checkOrder(knots);
this.n = knots.length -1;
this.knots = new double[n + 1];
System.arraycopy(knots, 0, this.knots, 0, n + 1);
this.polynomials = new PolynomialFunction[n];
System.arraycopy(polynomials, 0, this.polynomials, 0, n);
}
示例13
/**
* Builds a step function from a list of arguments and the corresponding
* values. Specifically, returns the function h(x) defined by <pre><code>
* h(x) = y[0] for all x < x[1]
* y[1] for x[1] <= x < x[2]
* ...
* y[y.length - 1] for x >= x[x.length - 1]
* </code></pre>
* The value of {@code x[0]} is ignored, but it must be strictly less than
* {@code x[1]}.
*
* @param x Domain values where the function changes value.
* @param y Values of the function.
* @throws NonMonotonicSequenceException
* if the {@code x} array is not sorted in strictly increasing order.
* @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
* @throws NoDataException if {@code x} or {@code y} are zero-length.
* @throws DimensionMismatchException if {@code x} and {@code y} do not
* have the same length.
*/
public StepFunction(double[] x,
double[] y)
throws NullArgumentException, NoDataException,
DimensionMismatchException, NonMonotonicSequenceException {
if (x == null ||
y == null) {
throw new NullArgumentException();
}
if (x.length == 0 ||
y.length == 0) {
throw new NoDataException();
}
if (y.length != x.length) {
throw new DimensionMismatchException(y.length, x.length);
}
MathArrays.checkOrder(x);
abscissa = MathArrays.copyOf(x);
ordinate = MathArrays.copyOf(y);
}
示例14
/**
* Test of parameters for the interpolator.
*/
@Test
public void testParameters() {
UnivariateInterpolator interpolator = new NevilleInterpolator();
try {
// bad abscissas array
double x[] = { 1.0, 2.0, 2.0, 4.0 };
double y[] = { 0.0, 4.0, 4.0, 2.5 };
UnivariateFunction p = interpolator.interpolate(x, y);
p.value(0.0);
Assert.fail("Expecting NonMonotonicSequenceException - bad abscissas array");
} catch (NonMonotonicSequenceException ex) {
// expected
}
}
示例15
/**
* Test of parameters for the interpolator.
*/
@Test
public void testParameters() {
UnivariateInterpolator interpolator = new NevilleInterpolator();
try {
// bad abscissas array
double x[] = { 1.0, 2.0, 2.0, 4.0 };
double y[] = { 0.0, 4.0, 4.0, 2.5 };
UnivariateFunction p = interpolator.interpolate(x, y);
p.value(0.0);
Assert.fail("Expecting NonMonotonicSequenceException - bad abscissas array");
} catch (NonMonotonicSequenceException ex) {
// expected
}
}
示例16
/**
* Test of parameters for the interpolator.
*/
@Test
public void testParameters() throws Exception {
UnivariateInterpolator interpolator = new NevilleInterpolator();
try {
// bad abscissas array
double x[] = { 1.0, 2.0, 2.0, 4.0 };
double y[] = { 0.0, 4.0, 4.0, 2.5 };
UnivariateFunction p = interpolator.interpolate(x, y);
p.value(0.0);
Assert.fail("Expecting NonMonotonicSequenceException - bad abscissas array");
} catch (NonMonotonicSequenceException ex) {
// expected
}
}
示例17
/**
* Return a copy of the divided difference array.
* <p>
* The divided difference array is defined recursively by <pre>
* f[x0] = f(x0)
* f[x0,x1,...,xk] = (f[x1,...,xk] - f[x0,...,x[k-1]]) / (xk - x0)
* </pre></p>
* <p>
* The computational complexity is O(N^2).</p>
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a fresh copy of the divided difference array.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException
* if {@code x} is not sorted in strictly increasing order.
*/
protected static double[] computeDividedDifference(final double x[], final double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
final double[] divdiff = y.clone(); // initialization
final int n = x.length;
final double[] a = new double [n];
a[0] = divdiff[0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < n-i; j++) {
final double denominator = x[j+i] - x[j];
divdiff[j] = (divdiff[j+1] - divdiff[j]) / denominator;
}
a[i] = divdiff[0];
}
return a;
}
示例18
/**
* Evaluate the Lagrange polynomial using
* <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
* Neville's Algorithm</a>. It takes O(n^2) time.
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @param z Point at which the function value is to be computed.
* @return the function value.
* @throws DimensionMismatchException if {@code x} and {@code y} have
* different lengths.
* @throws NonMonotonicSequenceException
* if {@code x} is not sorted in strictly increasing order.
* @throws NumberIsTooSmallException if the size of {@code x} is less
* than 2.
*/
public static double evaluate(double x[], double y[], double z)
throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
if (verifyInterpolationArray(x, y, false)) {
return evaluateInternal(x, y, z);
}
// Array is not sorted.
final double[] xNew = new double[x.length];
final double[] yNew = new double[y.length];
System.arraycopy(x, 0, xNew, 0, x.length);
System.arraycopy(y, 0, yNew, 0, y.length);
MathArrays.sortInPlace(xNew, yNew);
// Second check in case some abscissa is duplicated.
verifyInterpolationArray(xNew, yNew, true);
return evaluateInternal(xNew, yNew, z);
}
示例19
/**
* Test of parameters for the interpolator.
*/
@Test
public void testParameters() {
UnivariateInterpolator interpolator = new DividedDifferenceInterpolator();
try {
// bad abscissas array
double x[] = { 1.0, 2.0, 2.0, 4.0 };
double y[] = { 0.0, 4.0, 4.0, 2.5 };
UnivariateFunction p = interpolator.interpolate(x, y);
p.value(0.0);
Assert.fail("Expecting NonMonotonicSequenceException - bad abscissas array");
} catch (NonMonotonicSequenceException ex) {
// expected
}
}
示例20
/**
* Test of parameters for the interpolator.
*/
@Test
public void testParameters() {
UnivariateInterpolator interpolator = new DividedDifferenceInterpolator();
try {
// bad abscissas array
double x[] = { 1.0, 2.0, 2.0, 4.0 };
double y[] = { 0.0, 4.0, 4.0, 2.5 };
UnivariateFunction p = interpolator.interpolate(x, y);
p.value(0.0);
Assert.fail("Expecting NonMonotonicSequenceException - bad abscissas array");
} catch (NonMonotonicSequenceException ex) {
// expected
}
}
示例21
/**
* {@inheritDoc}
*/
public PiecewiseBicubicSplineInterpolatingFunction interpolate( final double[] xval,
final double[] yval,
final double[][] fval)
throws DimensionMismatchException,
NullArgumentException,
NoDataException,
NonMonotonicSequenceException {
if ( xval == null ||
yval == null ||
fval == null ||
fval[0] == null ) {
throw new NullArgumentException();
}
if ( xval.length == 0 ||
yval.length == 0 ||
fval.length == 0 ) {
throw new NoDataException();
}
MathArrays.checkOrder(xval);
MathArrays.checkOrder(yval);
return new PiecewiseBicubicSplineInterpolatingFunction( xval, yval, fval );
}
示例22
/**
* Compute an interpolating function for the dataset.
*
* @param x Interpolating points array.
* @param y Interpolating values array.
* @return a function which interpolates the dataset.
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException if {@code x} is not sorted in
* strictly increasing order.
*/
public PolynomialFunctionNewtonForm interpolate(double x[], double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
/**
* a[] and c[] are defined in the general formula of Newton form:
* p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... +
* a[n](x-c[0])(x-c[1])...(x-c[n-1])
*/
PolynomialFunctionLagrangeForm.verifyInterpolationArray(x, y, true);
/**
* When used for interpolation, the Newton form formula becomes
* p(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + ... +
* f[x0,x1,...,x[n-1]](x-x0)(x-x1)...(x-x[n-2])
* Therefore, a[k] = f[x0,x1,...,xk], c[k] = x[k].
* <p>
* Note x[], y[], a[] have the same length but c[]'s size is one less.</p>
*/
final double[] c = new double[x.length-1];
System.arraycopy(x, 0, c, 0, c.length);
final double[] a = computeDividedDifference(x, y);
return new PolynomialFunctionNewtonForm(a, c);
}
示例23
@Test(expected=NonMonotonicSequenceException.class)
public void testUnsortedSamples() {
final double[] xval = { 2, 3, 7, 4, 6 };
final double[] yval = { 1, 6, 5, -1, -2 };
final double period = 10;
final UnivariateInterpolator interpolator
= new UnivariatePeriodicInterpolator(new LinearInterpolator(), period);
interpolator.interpolate(xval, yval);
}
示例24
/**
* Construct a Lagrange polynomial with the given abscissas and function
* values. The order of interpolating points are not important.
* <p>
* The constructor makes copy of the input arrays and assigns them.</p>
*
* @param x interpolating points
* @param y function values at interpolating points
* @throws DimensionMismatchException if the array lengths are different.
* @throws NumberIsTooSmallException if the number of points is less than 2.
* @throws NonMonotonicSequenceException
* if two abscissae have the same value.
*/
public PolynomialFunctionLagrangeForm(double x[], double y[])
throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
this.x = new double[x.length];
this.y = new double[y.length];
System.arraycopy(x, 0, this.x, 0, x.length);
System.arraycopy(y, 0, this.y, 0, y.length);
coefficientsComputed = false;
if (!verifyInterpolationArray(x, y, false)) {
MathArrays.sortInPlace(this.x, this.y);
// Second check in case some abscissa is duplicated.
verifyInterpolationArray(this.x, this.y, true);
}
}
示例25
/**
* Creates an integrator from the given {@code points} and {@code weights}.
* The integration interval is defined by the first and last value of
* {@code points} which must be sorted in increasing order.
*
* @param points Integration points.
* @param weights Weights of the corresponding integration nodes.
* @throws NonMonotonicSequenceException if the {@code points} are not
* sorted in increasing order.
* @throws DimensionMismatchException if points and weights don't have the same length
*/
public GaussIntegrator(double[] points,
double[] weights)
throws NonMonotonicSequenceException, DimensionMismatchException {
if (points.length != weights.length) {
throw new DimensionMismatchException(points.length,
weights.length);
}
MathArrays.checkOrder(points, MathArrays.OrderDirection.INCREASING, true, true);
this.points = points.clone();
this.weights = weights.clone();
}
示例26
/**
* Computes a linear interpolating function for the data set.
*
* @param x the arguments for the interpolation points
* @param y the values for the interpolation points
* @return a function which interpolates the data set
* @throws DimensionMismatchException if {@code x} and {@code y}
* have different sizes.
* @throws NonMonotonicSequenceException if {@code x} is not sorted in
* strict increasing order.
* @throws NumberIsTooSmallException if the size of {@code x} is smaller
* than 2.
*/
public PolynomialSplineFunction interpolate(double x[], double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
if (x.length != y.length) {
throw new DimensionMismatchException(x.length, y.length);
}
if (x.length < 2) {
throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS,
x.length, 2, true);
}
// Number of intervals. The number of data points is n + 1.
int n = x.length - 1;
MathArrays.checkOrder(x);
// Slope of the lines between the datapoints.
final double m[] = new double[n];
for (int i = 0; i < n; i++) {
m[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]);
}
final PolynomialFunction polynomials[] = new PolynomialFunction[n];
final double coefficients[] = new double[2];
for (int i = 0; i < n; i++) {
coefficients[0] = y[i];
coefficients[1] = m[i];
polynomials[i] = new PolynomialFunction(coefficients);
}
return new PolynomialSplineFunction(x, polynomials);
}
示例27
/**
* Creates an integrator from the given {@code points} and {@code weights}.
* The integration interval is defined by the first and last value of
* {@code points} which must be sorted in increasing order.
*
* @param points Integration points.
* @param weights Weights of the corresponding integration nodes.
* @throws NonMonotonicSequenceException if the {@code points} are not
* sorted in increasing order.
*/
public GaussIntegrator(double[] points,
double[] weights)
throws NonMonotonicSequenceException {
if (points.length != weights.length) {
throw new DimensionMismatchException(points.length,
weights.length);
}
MathArrays.checkOrder(points, MathArrays.OrderDirection.INCREASING, true, true);
this.points = points.clone();
this.weights = weights.clone();
}
示例28
/**
* Computes a linear interpolating function for the data set.
*
* @param x the arguments for the interpolation points
* @param y the values for the interpolation points
* @return a function which interpolates the data set
* @throws DimensionMismatchException if {@code x} and {@code y}
* have different sizes.
* @throws NonMonotonicSequenceException if {@code x} is not sorted in
* strict increasing order.
* @throws NumberIsTooSmallException if the size of {@code x} is smaller
* than 2.
*/
public PolynomialSplineFunction interpolate(double x[], double y[])
throws DimensionMismatchException,
NumberIsTooSmallException,
NonMonotonicSequenceException {
if (x.length != y.length) {
throw new DimensionMismatchException(x.length, y.length);
}
if (x.length < 2) {
throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS,
x.length, 2, true);
}
// Number of intervals. The number of data points is n + 1.
int n = x.length - 1;
MathArrays.checkOrder(x);
// Slope of the lines between the datapoints.
final double m[] = new double[n];
for (int i = 0; i < n; i++) {
m[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]);
}
final PolynomialFunction polynomials[] = new PolynomialFunction[n];
final double coefficients[] = new double[2];
for (int i = 0; i < n; i++) {
coefficients[0] = y[i];
coefficients[1] = m[i];
polynomials[i] = new PolynomialFunction(coefficients);
}
return new PolynomialSplineFunction(x, polynomials);
}
示例29
/**
* Creates an integrator from the given {@code points} and {@code weights}.
* The integration interval is defined by the first and last value of
* {@code points} which must be sorted in increasing order.
*
* @param points Integration points.
* @param weights Weights of the corresponding integration nodes.
* @throws NonMonotonicSequenceException if the {@code points} are not
* sorted in increasing order.
* @throws DimensionMismatchException if points and weights don't have the same length
*/
public GaussIntegrator(double[] points,
double[] weights)
throws NonMonotonicSequenceException, DimensionMismatchException {
if (points.length != weights.length) {
throw new DimensionMismatchException(points.length,
weights.length);
}
MathArrays.checkOrder(points, MathArrays.OrderDirection.INCREASING, true, true);
this.points = points.clone();
this.weights = weights.clone();
}
示例30
@Test(expected=NonMonotonicSequenceException.class)
public void testUnsortedSamples() {
final double[] xval = { 2, 3, 7, 4, 6 };
final double[] yval = { 1, 6, 5, -1, -2 };
final double period = 10;
final UnivariateInterpolator interpolator
= new UnivariatePeriodicInterpolator(new LinearInterpolator(), period);
interpolator.interpolate(xval, yval);
}