提问者:小点点

来自训练的Neo4j密码查询


我刚刚在http://www.neo4j.org/learn/online_course完成培训,有几个关于实验室答案的问题。

第一个来自第2课中的Advanced Graph Lab。(没有给出答案,也没有在图小部件中验证)

问题是:推荐3个基努·里维斯应该合作(但没有)的演员。提示是,你应该基本上选择三个与基努没有ACTED_IN的电影有ACTED_IN关系的人。

该图具有具有ACTED_IN关系和定向关系的Person节点和Movie节点。

我想出了这个:

MATCH (a:Person)-[:ACTED_IN]->(movie:Movie)
WHERE NOT (:Person {name:"Keanu Reeves"})-[:ACTED_IN]->(movie)
RETURN a, count(movie)
ORDER BY count(movie) DESC
LIMIT 3

但我不知道这是否真的排除了同一部电影,或者只是基努·里维斯(因为被遣返的演员没有出现在基努的电影中,但他们可能已经被遣返了。


共3个答案

匿名用户

到目前为止,我已经找到了两个解决方案。

1:推荐基努·里维斯没有演过的最忙碌的演员。

MATCH (p:Person)-[:ACTED_IN]->(m)
WHERE p.name <> 'Keanu Reeves'
AND NOT (p)-[:ACTED_IN]->()<-[:ACTED_IN]-(:Person{name:'Keanu Reeves'})
RETURN p.name, count(m) AS rating
ORDER BY count(m) DESC
LIMIT 3;

它产生

p.name          | rating
--------------------------
Tom Hanks       | 12
Meg Ryan        | 5
Cuba Gooding Jr.| 4

2:推荐与基努·里维斯合作最多的演员

MATCH (f:Person)-[:ACTED_IN]->(m)<-[:ACTED_IN]-(c:Person),
(k:Person{name:'Keanu Reeves'})
WHERE c.name <> 'Keanu Reeves'
AND (f)-[:ACTED_IN]->()<-[:ACTED_IN]-(k)
AND NOT (c)-[:ACTED_IN]->()<-[:ACTED_IN]-(k)
RETURN c.name, count(c) AS  Rating
ORDER BY Rating desc
LIMIT 3;

它产生

p.name          | rating
--------------------------
Danny DeVito    | 2
J.T. Walsh      | 2
Tom Hanks       | 2

匿名用户

今天我遇到了这个问题,我做了什么

MATCH (keanu:Person)-[:ACTED_IN]->(movie),
      (playedwith:Person)-[:ACTED_IN]->(movie), 
      (playedwith)-[t:ACTED_IN]->(othermovie),
      (other:Person)-[:ACTED_IN]->(othermovie)
WHERE keanu.name = "Keanu Reeves"
      AND NOT (other)-[:ACTED_IN]->(movie)
      AND NOT (keanu)-[:ACTED_IN]->(othermovie)
RETURN other.name
      ,collect(DISTINCT othermovie)
      ,collect(DISTINCT playedwith)
      ,count(DISTINCT playedwith)
ORDER BY count(DISTINCT playedwith)desc
LIMIT 3

因为有这么多的Distict,我不喜欢它,但这是结果:

other.name    | collect(DISTINCT othermovie) | collect(DISTINCT playedwith)        | count(DISTINCT playedwith)
-----------------------------------------------------------------------------------------------------------------------------
Tom Hanks     | ["Cloud Atlas",              | ["Hugo Weaving","Charlize Theron"]  | 2
              |  "That Thing You Do"]        |
Tom Cruise    | ["A Few Good Men"]           | ["Jack Nicholson"]                  | 1
Robin Williams| ["The Birdcage"]             | ["Gene Hackman"]                    | 1

匿名用户

所以我找到了两种看起来不错的不同方法。第一个找到了最有“ACTED_IN同一部电影”路径的人,他们原来的人不是基努·里维斯有“ACTED_IN同一部电影”关系的人。

第二个发现有人没有和基努·里维斯一起ACTED_IN过电影,但被拍过最多电影的人命令。

当然,在所有分享这种关系的演员之间建立一种“WORKED_WITH”的关系,然后寻找基努没有WORKED_WITH的每个人,这是最容易的,但我想这违背了这个问题的乐趣。

第一个解决方案很简单,看起来也很准确:

MATCH (a:Person {name:"Keanu Reeves"})-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-(b:Person)
WITH collect(b.name) AS FoF
MATCH (c:Person)-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-(d:Person)
WHERE not c.name IN FoF AND c.name <> "Keanu Reeves"
RETURN distinct c.name, count(distinct d)
ORDER BY count(distinct d) desc
limit 3

它返回:

c.name          | count(distinct d)
-------------------------------
Tom Hanks       |    34
Cuba Gooding Jr.|    24
Tom Cruise      |    23

其中d是与c“ACTED_IN”的人数。

编辑添加:

在回答之后,我使用了他们更精简的查询方法来得出这个结论:

MATCH (a:Person)-[:ACTED_IN]->()<-[:ACTED_IN]-(b:Person)
WHERE a.name <>'Keanu Reeves' 
AND NOT (a)-[:ACTED_IN]->()<-[:ACTED_IN]-(b:Person {name:'Keanu Reeves'})
RETURN a.name, count(Distinct b) AS Rating
ORDER BY Rating DESC
LIMIT 3

它返回与上述相同的内容。

或者,我将此用于在大多数电影中工作的人:

MATCH (a:Person {name:"Keanu Reeves"})-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-(b:Person)
WITH collect(b.name) AS FoF
MATCH (c:Person)-[:ACTED_IN]->(m:Movie)<-[:ACTED_IN]-(d:Person)
WHERE not c.name IN FoF AND c.name <> "Keanu Reeves"
RETURN distinct c.name, count(distinct m)
ORDER BY count(distinct m) desc
limit 3

它返回:

c.name           |  count(distinct m)
-------------------------------------------
Tom Hanks        |  11
Meg Ryan         |  5
Cuba Gooding Jr. |  4

其中m是他们参与过的电影数量。