我已经创建了一个模型来对飞机和汽车图像进行分类,但在非常长的时间之后,acc和val_acc保持不变
import numpy as np
import matplotlib as plt
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.preprocessing.image import ImageDataGenerator
from keras.preprocessing.image import image
import os
model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(64,64,3),activation="relu"))
model.add(MaxPooling2D(2,2))
model.add(Convolution2D(64,(3,3),activation="relu"))
model.add(MaxPooling2D(2,2))
model.add(Convolution2D(64,(3,3),activation="sigmoid"))
model.add(MaxPooling2D(2,2))
model.add(Flatten())
model.add(Dense(32,activation="sigmoid"))
model.add(Dense(32,activation="sigmoid"))
model.add(Dense(32,activation="sigmoid"))
model.add(Dense(1,activation="softmax"))
model.compile(optimizer='adam', loss='binary_crossentropy',
metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen=ImageDataGenerator(重写=1./255)
train_set=train_datagen.flow_from_directory('train_images',target_size=(64,64),batch_size=32,class_mode='二进制')
测试集=列车数据发生器。来自目录的流('val\u set',target\u size=(64,64),batch\u size=32,class\u mode='binary')
模型安装发电机(列车组,每个历元的步数=160,历元数=25,验证数据=测试组,验证步数=40)
Epoch 1/25
30/30 [==============================] - 18s 593ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 2/25
30/30 [==============================] - 15s 491ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 3/25
30/30 [==============================] - 19s 640ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 4/25
30/30 [==============================] - 14s 474ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 5/25
30/30 [==============================] - 16s 532ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 6/25
30/30 [==============================] - 14s 473ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 7/25
30/30 [==============================] - 14s 469ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 8/25
30/30 [==============================] - 14s 469ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 9/25
30/30 [==============================] - 14s 472ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 10/25
30/30 [==============================] - 16s 537ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 11/25
30/30 [==============================] - 18s 590ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 12/25
30/30 [==============================] - 13s 441ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 13/25
30/30 [==============================] - 11s 374ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 14/25
30/30 [==============================] - 11s 370ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 15/25
30/30 [==============================] - 13s 441ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 16/25
30/30 [==============================] - 13s 419ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 17/25
30/30 [==============================] - 12s 401ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 18/25
30/30 [==============================] - 16s 536ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 19/25
30/30 [==============================] - 16s 523ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 20/25
30/30 [==============================] - 16s 530ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 21/25
30/30 [==============================] - 16s 546ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 22/25
30/30 [==============================] - 15s 500ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 23/25
30/30 [==============================] - 16s 546ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 24/25
30/30 [==============================] - 16s 545ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
Epoch 25/25
30/30 [==============================] - 15s 515ms/step - loss: 7.9712 - acc: 0.5000 - val_loss:
7.9712 - val_acc: 0.5000
模型结构中存在几个问题。
model.add(密集(1,激活="softmax"))
您使用的是softmax,这意味着您试图解决多类分类,而不是二进制分类。如果确实如此,您需要将损失更改为categorical\u crossentropy
。这样,编译行将变成:
model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
如果不是这样,您只想解决一个二进制分类,您可能会很好,但我建议将最后一层激活更改为sigmoid
问题就在这里:
model.add(Dense(1,activation="softmax"))
不能对一个神经元使用softmax
,因为它在神经元上规范化,这意味着对于一个神经元,它将总是产生一个常数1.0值。对于二分类,您必须在输出处使用sigmoid激活:
model.add(Dense(1,activation="sigmoid"))
此外,在隐藏层中使用sigmoid激活是不明智的,因为它们会产生消失的梯度问题。请首选ReLU
或类似的激活。