我有一个小的决策树代码,我相信我把所有东西都转换成int,我已经用isnan、max等检查了我的训练/测试数据。
我真的不知道为什么会犯这样的错误。
所以我试图从决策树中传递Mnist数据集,然后使用类进行攻击。
代码如下:
from AttackUtils import Attack
from AttackUtils import calc_output_weighted_weights, targeted_gradient, non_targeted_gradient, non_targeted_sign_gradient
(X_train_woae, y_train_woae), (X_test_woae, y_test_woae) = mnist.load_data()
X_train_woae = X_train_woae.reshape((len(X_train_woae), np.prod(X_train_woae.shape[1:])))
X_test_woae = X_test_woae.reshape((len(X_test_woae), np.prod(X_test_woae.shape[1:])))
from sklearn import tree
#model_woae = LogisticRegression(multi_class='multinomial', solver='lbfgs', fit_intercept=False)
model_woae = tree.DecisionTreeClassifier(class_weight='balanced')
model_woae.fit(X_train_woae, y_train_woae)
#model_woae.coef_ = model_woae.feature_importances_
coef_int = np.round(model_woae.tree_.compute_feature_importances(normalize=False) * X_train_woae.size).astype(int)
attack_woae = Attack(model_woae)
attack_woae.prepare(X_train_woae, y_train_woae, X_test_woae, y_test_woae)
weights_woae = attack_woae.weights
num_classes_woae = len(np.unique(y_train_woae))
attack_woae.create_one_hot_targets(y_test_woae)
attack_woae.attack_to_max_epsilon(non_targeted_gradient, 50)
non_targeted_scores_woae = attack_woae.scores
因此,攻击类进行扰动和非目标梯度攻击。下面是攻击类:
import numpy as np
from sklearn.metrics import accuracy_score
def calc_output_weighted_weights(output, w):
for c in range(len(output)):
if c == 0:
weighted_weights = output[c] * w[c]
else:
weighted_weights += output[c] * w[c]
return weighted_weights
def targeted_gradient(foolingtarget, output, w):
ww = calc_output_weighted_weights(output, w)
for k in range(len(output)):
if k == 0:
gradient = foolingtarget[k] * (w[k]-ww)
else:
gradient += foolingtarget[k] * (w[k]-ww)
return gradient
def non_targeted_gradient(target, output, w):
ww = calc_output_weighted_weights(output, w)
for k in range(len(target)):
if k == 0:
gradient = (1-target[k]) * (w[k]-ww)
else:
gradient += (1-target[k]) * (w[k]-ww)
return gradient
def non_targeted_sign_gradient(target, output, w):
gradient = non_targeted_gradient(target, output, w)
return np.sign(gradient)
class Attack:
def __init__(self, model):
self.fooling_targets = None
self.model = model
def prepare(self, X_train, y_train, X_test, y_test):
self.images = X_test
self.true_targets = y_test
self.num_samples = X_test.shape[0]
self.train(X_train, y_train)
print("Model training finished.")
self.test(X_test, y_test)
print("Model testing finished. Initial accuracy score: " + str(self.initial_score))
def set_fooling_targets(self, fooling_targets):
self.fooling_targets = fooling_targets
def train(self, X_train, y_train):
self.model.fit(X_train, y_train)
self.weights = self.model.coef_
self.num_classes = self.weights.shape[0]
def test(self, X_test, y_test):
self.preds = self.model.predict(X_test)
self.preds_proba = self.model.predict_proba(X_test)
self.initial_score = accuracy_score(y_test, self.preds)
def create_one_hot_targets(self, targets):
self.one_hot_targets = np.zeros(self.preds_proba.shape)
for n in range(targets.shape[0]):
self.one_hot_targets[n, targets[n]] = 1
def attack(self, attackmethod, epsilon):
perturbed_images, highest_epsilon = self.perturb_images(epsilon, attackmethod)
perturbed_preds = self.model.predict(perturbed_images)
score = accuracy_score(self.true_targets, perturbed_preds)
return perturbed_images, perturbed_preds, score, highest_epsilon
def perturb_images(self, epsilon, gradient_method):
perturbed = np.zeros(self.images.shape)
max_perturbations = []
for n in range(self.images.shape[0]):
perturbation = self.get_perturbation(epsilon, gradient_method, self.one_hot_targets[n], self.preds_proba[n])
perturbed[n] = self.images[n] + perturbation
max_perturbations.append(np.max(perturbation))
highest_epsilon = np.max(np.array(max_perturbations))
return perturbed, highest_epsilon
def get_perturbation(self, epsilon, gradient_method, target, pred_proba):
gradient = gradient_method(target, pred_proba, self.weights)
inf_norm = np.max(gradient)
perturbation = epsilon / inf_norm * gradient
return perturbation
def attack_to_max_epsilon(self, attackmethod, max_epsilon):
self.max_epsilon = max_epsilon
self.scores = []
self.epsilons = []
self.perturbed_images_per_epsilon = []
self.perturbed_outputs_per_epsilon = []
for epsilon in range(0, self.max_epsilon):
perturbed_images, perturbed_preds, score, highest_epsilon = self.attack(attackmethod, epsilon)
self.epsilons.append(highest_epsilon)
self.scores.append(score)
self.perturbed_images_per_epsilon.append(perturbed_images)
self.perturbed_outputs_per_epsilon.append(perturbed_preds)
这是它给出的回溯:
值错误
在4个num_classes_woae=len(np.unique(y_train_woae))5个attack_woae中进行回溯(最后一次调用)。创建一个热目标(y\U测试\U woae)----
~\MULTIATTACK\AttackUtils。py在攻击到最大epsilon(self,attackmethod,max_epsilon)106 self中。扰动_输出_每_epsilon=[]107范围内的epsilon(0,self.max_epsilon):--
~\MULTIATTACK\AttackUtils。py-in-attack(self,attackmethod,epsilon)79 def-attack(self,attackmethod,epsilon):80张扰动图像,最高epsilon=self。扰动图像(ε,攻击法)---
...\appdata\local\programs\python\python35\lib\site packages\sklearn\tree\tree。预测(self,X,check_输入)413“414检查_是否已安装(self,‘tree_’)--
...\appdata\local\programs\python\python35\lib\site packages\sklearn\tree\tree。如果检查输入:--
...\appdata\local\programs\python\python35\lib\site packages\sklearn\utils\validation。检查数组(数组、接受稀疏、接受大稀疏、数据类型、顺序、复制、强制所有有限、确保2d、允许nd、确保最小样本、确保最小特征、警告数据类型、估计器)566如果强制所有有限:567断言所有有限(数组、--
...\appdata\本地\程序\python\python35\lib\site-包\skLearning\utils\validation.py_assert_all_finite(X,allow_nan)54不allow_nan也不np.isfinite(X). all()): 55type_err='infinity'如果allow_nan'NaN,infinity'---
ValueError:输入包含NaN、无穷大或对数据类型('float32')太大的值。
编辑:
我已经将系数数字添加为0,现在它在行的正下方给出了相同的错误,在attack.attack_to_max_epsilon(non_targeted_gradient,epsilon_number)
在训练之前,试着在你的标签上涂上一热安康。.
from sklearn.preprocessing import LabelEncoder
mylabels= ["label1", "label2", "label2"..."n.label"]
le = LabelEncoder()
labels = le.fit_transform(mylabels)
然后尝试拆分数据:
from sklearn.model_selection import train_test_split
(x_train, x_test, y_train, y_test) = train_test_split(data,
labels,
test_size=0.25)
现在,您的标签可能会用数字编码,这有助于训练机器学习算法。