我正在用tensorflow学习基本的CNN模型。在训练我的模型之后,我想加载它并使用该模型预测手写数字img(CSV文件)。
这是我的CNN模型:
import random
import os
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
tf.logging.set_verbosity(tf.logging.ERROR)
class CNNLogisticClassification:
def __init__(self, shape_picture, n_labels,
learning_rate=0.5, dropout_ratio=0.5, alpha=0.0):
self.shape_picture = shape_picture
self.n_labels = n_labels
self.weights = None
self.biases = None
self.graph = tf.Graph() # initialize new grap
self.build(learning_rate, dropout_ratio, alpha) # building graph
self.sess = tf.Session(graph=self.graph) # create session by the graph
def build(self, learning_rate, dropout_ratio, alpha):
with self.graph.as_default():
### Input
self.train_pictures = tf.placeholder(tf.float32,
shape=[None]+self.shape_picture,name="Input")
self.train_labels = tf.placeholder(tf.int32,
shape=(None, self.n_labels),name="Output")
### Optimalization
# build neurel network structure and get their predictions and loss
self.y_, self.original_loss = self.structure(pictures=self.train_pictures,
labels=self.train_labels,
dropout_ratio=dropout_ratio,
train=True, )
# regularization loss
self.regularization = \
tf.reduce_sum([tf.nn.l2_loss(w) for w in self.weights.values()]) \
/ tf.reduce_sum([tf.size(w, out_type=tf.float32) for w in self.weights.values()])
# total loss
self.loss = self.original_loss + alpha * self.regularization
# define training operation
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
self.train_op = optimizer.minimize(self.loss)
### Prediction
self.new_pictures = tf.placeholder(tf.float32,
shape=[None]+self.shape_picture,name="Input")
self.new_labels = tf.placeholder(tf.int32,
shape=(None, self.n_labels),name="Output")
self.new_y_, self.new_original_loss = self.structure(pictures=self.new_pictures,
labels=self.new_labels)
self.new_loss = self.new_original_loss + alpha * self.regularization
### Initialization
self.init_op = tf.global_variables_initializer()
### save model
self.saver=tf.train.Saver()
def structure(self, pictures, labels, dropout_ratio=None, train=False):
### Variable
## LeNet5 Architecture(http://yann.lecun.com/exdb/lenet/)
# input:(batch,28,28,1) => conv1[5x5,6] => (batch,24,24,6)
# pool2 => (batch,12,12,6) => conv2[5x5,16] => (batch,8,8,16)
# pool4 => fatten5 => (batch,4x4x16) => fc6 => (batch,120)
# (batch,120) => fc7 => (batch,84)
# (batch,84) => fc8 => (batch,10) => softmax
if (not self.weights) and (not self.biases):
self.weights = {
'conv1': tf.Variable(tf.truncated_normal(shape=(5, 5, 1, 6),
stddev=0.1)),
'conv3': tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16),
stddev=0.1)),
'fc6': tf.Variable(tf.truncated_normal(shape=(4*4*16, 120),
stddev=0.1)),
'fc7': tf.Variable(tf.truncated_normal(shape=(120, 84),
stddev=0.1)),
'fc8': tf.Variable(tf.truncated_normal(shape=(84, self.n_labels),
stddev=0.1)),
}
self.biases = {
'conv1': tf.Variable(tf.zeros(shape=(6))),
'conv3': tf.Variable(tf.zeros(shape=(16))),
'fc6': tf.Variable(tf.zeros(shape=(120))),
'fc7': tf.Variable(tf.zeros(shape=(84))),
'fc8': tf.Variable(tf.zeros(shape=(self.n_labels))),
}
### Structure
conv1 = self.get_conv_2d_layer(pictures,
self.weights['conv1'], self.biases['conv1'],
activation=tf.nn.relu)
pool2 = tf.nn.max_pool(conv1,
ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
conv3 = self.get_conv_2d_layer(pool2,
self.weights['conv3'], self.biases['conv3'],
activation=tf.nn.relu)
pool4 = tf.nn.max_pool(conv3,
ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
fatten5 = self.get_flatten_layer(pool4)
if train:
fatten5 = tf.nn.dropout(fatten5, keep_prob=1-dropout_ratio[0])
fc6 = self.get_dense_layer(fatten5,
self.weights['fc6'], self.biases['fc6'],
activation=tf.nn.relu)
if train:
fc6 = tf.nn.dropout(fc6, keep_prob=1-dropout_ratio[1])
fc7 = self.get_dense_layer(fc6,
self.weights['fc7'], self.biases['fc7'],
activation=tf.nn.relu)
logits = self.get_dense_layer(fc7, self.weights['fc8'], self.biases['fc8'])
y_ = tf.nn.softmax(logits)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=labels,
logits=logits))
return (y_, loss)
def get_dense_layer(self, input_layer, weight, bias, activation=None):
x = tf.add(tf.matmul(input_layer, weight), bias)
if activation:
x = activation(x)
return x
def get_conv_2d_layer(self, input_layer,
weight, bias,
strides=(1, 1), padding='VALID', activation=None):
x = tf.add(
tf.nn.conv2d(input_layer,
weight,
[1, strides[0], strides[1], 1],
padding=padding), bias)
if activation:
x = activation(x)
return x
def get_flatten_layer(self, input_layer):
shape = input_layer.get_shape().as_list()
n = 1
for s in shape[1:]:
n *= s
x = tf.reshape(input_layer, [-1, n])
return x
def fit(self, X, y, epochs=10,
validation_data=None, test_data=None, batch_size=None):
X = self._check_array(X)
y = self._check_array(y)
N = X.shape[0]
random.seed(9000)
if not batch_size:
batch_size = N
self.sess.run(self.init_op)
for epoch in range(epochs):
print('Epoch %2d/%2d: ' % (epoch+1, epochs))
# mini-batch gradient descent
index = [i for i in range(N)]
random.shuffle(index)
while len(index) > 0:
index_size = len(index)
batch_index = [index.pop() for _ in range(min(batch_size, index_size))]
feed_dict = {
self.train_pictures: X[batch_index, :],
self.train_labels: y[batch_index],
}
_, loss = self.sess.run([self.train_op, self.loss],
feed_dict=feed_dict)
print('[%d/%d] loss = %.4f ' % (N-len(index), N, loss), end='\r')
# evaluate at the end of this epoch
y_ = self.predict(X)
train_loss = self.evaluate(X, y)
train_acc = self.accuracy(y_, y)
msg = '[%d/%d] loss = %8.4f, acc = %3.2f%%' % (N, N, train_loss, train_acc*100)
if validation_data:
val_loss = self.evaluate(validation_data[0], validation_data[1])
val_acc = self.accuracy(self.predict(validation_data[0]), validation_data[1])
msg += ', val_loss = %8.4f, val_acc = %3.2f%%' % (val_loss, val_acc*100)
print(msg)
if test_data:
test_acc = self.accuracy(self.predict(test_data[0]), test_data[1])
print('test_acc = %3.2f%%' % (test_acc*100))
def accuracy(self, predictions, labels):
return (np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))/predictions.shape[0])
def predict(self, X):
X = self._check_array(X)
return self.sess.run(self.new_y_, feed_dict={self.new_pictures: X})
def evaluate(self, X, y):
X = self._check_array(X)
y = self._check_array(y)
return self.sess.run(self.new_loss, feed_dict={self.new_pictures: X,
self.new_labels: y})
def _check_array(self, ndarray):
ndarray = np.array(ndarray)
if len(ndarray.shape) == 1:
ndarray = np.reshape(ndarray, (1, ndarray.shape[0]))
return ndarray
if __name__ == '__main__':
print('Extract MNIST Dataset ...')
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
train_data = mnist.train
valid_data = mnist.validation
test_data = mnist.test
train_img = np.reshape(train_data.images, [-1, 28, 28, 1])
valid_img = np.reshape(valid_data.images, [-1, 28, 28, 1])
test_img = np.reshape(test_data.images, [-1, 28, 28, 1])
model = CNNLogisticClassification(
shape_picture=[28, 28, 1],
n_labels=10,
learning_rate=0.07,
dropout_ratio=[0.2, 0.1],
alpha=0.1,
)
model.fit(
X=train_img,
y=train_data.labels,
epochs=10,
validation_data=(valid_img, valid_data.labels),
test_data=(test_img, test_data.labels),
batch_size=32,
)
saver = model.saver.save(model.sess, "test_model")
print("Model saved in path: %s" % saver)
我创建了另一个py文件来加载我的模型:
import tensorflow as tf
saver = tf.train.import_meta_graph('./my_model/test_model.meta')
with tf.Session() as sess:
new_saver = tf.train.import_meta_graph('./my_model/test_model.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./my_model'))
sess.run(tf.global_variables_initializer())
saver.predict('D:\python\number_data\3.csv')
这是我得到的错误:
AttributeError:“Saver”对象没有属性“predict”
如何修复它并让训练好的模型预测我的CSV文件?提前感谢您的帮助!
我将第二个py文件更改如下:
import numpy as np
import tensorflow as tf
import pandas as pd
X=pd.read_csv('D:/PYTHON/cnn_data/7.csv', index_col=None, header=None).values
X1=X/255
X3=tf.convert_to_tensor(
X1,
dtype=None,
dtype_hint=None,
name=None
)
saver = tf.train.import_meta_graph('./my_model/test_model.meta')
with tf.Session() as sess:
new_saver = tf.train.import_meta_graph('./my_model/test_model.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./my_model'))
graph=tf.get_default_graph()
xs0=graph.get_tensor_by_name("Input:0")
prediction=graph.get_tensor_by_name("Output:0")
sess.run(prediction,feed_dict={xs0:X3})
print(prediction)
我只尝试预测一个数字img数据(一行CSV文件),我将其转换为张量类型,并将我的两个占位符命名为“输入”、“输出”,但得到另一个错误:
TypeError:提要的值不能是tf。张量物体。可接受的提要值包括Python标量、字符串、列表、numpy ndarray或TensorHandles。作为参考,tensor对象是tensor(“Const:0”,shape=(1784),dtype=float64),它通过键tensor(“Input:0”,shape=(?,28,28,1),dtype=float32)传递给提要。
首先,这里明显的错误是您试图调用一个不存在的函数。显然,saver对象没有预测函数。
其次,如果您希望Tensorflow进行预测,您需要为其提供“Tensorflow”输入,遗憾的是,CSV不在其中。
您需要做的就是将CSV输入转换为张量,例如,使用如下函数:
filename = 'D:\python\number_data\3.csv'
def csv_to_tensor(filename):
...
return tensors
我无法确切地告诉您如何实现该函数,因为我不知道数据的确切格式,但我假设文件中的每一行都是一个输入。因此,您很可能只需要在文件中的行之间循环,并将每一行转换为张量,然后可以由Tensorflow模型使用张量。