提问者:小点点

为什么我不能在这张图片上运行我的tensorflow CNN模型?


我从零开始创建了一个TensorFlow CNN来识别某些类型的动物。 我相信模型是工作的,因为我正在获取关于训练数据的数据,并且当我运行代码时,我在我的目录中看到一个新的文件夹。 当我试图运行代码来预测一个新的单个图像时,就在下面,我得到了这个错误。 我是TensorFlow的新手,所以我不确定我做错了什么。 该映像位于主目录中,是一个。jpg映像。 如果你需要更多信息,请告诉我。 谢谢

CATEGORIES = ["cane", "cavallo", "elefante", "farfalla", "gallina",
      "gatto", "mucca", "pecora", "ragno", "scoiattolo"]
def prepare(file):
IMG_SIZE = 50
img_array = cv2.imread(file, cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1)
model = tf.keras.models.load_model("CNN.model")
from PIL import Image
import numpy as np
from skimage import transform
image = load('test.jpg')
model.predict(image)
prediction = model.predict([image])
prediction = list(prediction[0])
print(CATEGORIES[prediction.index(max(prediction))])

这就是错误

ValueError                                Traceback (most recent call 
last)
<ipython-input-4-5c3fc0a5d50b> in <module>
     14 from skimage import transform
     15 image = load('test.jpg')
---> 16 model.predict(image)
     17 prediction = model.predict([image])
     18 prediction = list(prediction[0])

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
     86       raise ValueError('{} is not supported in multi-worker mode.'.format(
     87           method.__name__))
---> 88     return method(self, *args, **kwargs)
     89 
     90   return tf_decorator.make_decorator(

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing)
   1266           for step in data_handler.steps():
   1267             callbacks.on_predict_batch_begin(step)
-> 1268             tmp_batch_outputs = predict_function(iterator)
   1269             # Catch OutOfRangeError for Datasets of unknown size.
   1270             # This blocks until the batch has finished executing.

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    578         xla_context.Exit()
    579     else:
--> 580       result = self._call(*args, **kwds)
    581 
    582     if tracing_count == self._get_tracing_count():

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    625       # This is the first call of __call__, so we have to initialize.
    626       initializers = []
--> 627       self._initialize(args, kwds, add_initializers_to=initializers)
    628     finally:
    629       # At this point we know that the initialization is complete (or less

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    504     self._concrete_stateful_fn = (
    505         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 506             *args, **kwds))
    507 
    508     def invalid_creator_scope(*unused_args, **unused_kwds):

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   2444       args, kwargs = None, None
   2445     with self._lock:
-> 2446       graph_function, _, _ = self._maybe_define_function(args, kwargs)
   2447     return graph_function
   2448 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   2775 
   2776       self._function_cache.missed.add(call_context_key)
-> 2777       graph_function = self._create_graph_function(args, kwargs)
   2778       self._function_cache.primary[cache_key] = graph_function
   2779       return graph_function, args, kwargs

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   2665             arg_names=arg_names,
   2666             override_flat_arg_shapes=override_flat_arg_shapes,
-> 2667             capture_by_value=self._capture_by_value),
   2668         self._function_attributes,
   2669         # Tell the ConcreteFunction to clean up its graph once it goes out of

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    979         _, original_func = tf_decorator.unwrap(python_func)
    980 
--> 981       func_outputs = python_func(*func_args, **func_kwargs)
    982 
    983       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    439         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    440         # the function a weak reference to itself to avoid a reference cycle.
--> 441         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    442     weak_wrapped_fn = weakref.ref(wrapped_fn)
    443 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    966           except Exception as e:  # pylint:disable=broad-except
    967             if hasattr(e, "ag_error_metadata"):
--> 968               raise e.ag_error_metadata.to_exception(e)
    969             else:
    970               raise

ValueError: in user code:

    /Users/rin/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:1147 predict_function  *
        outputs = self.distribute_strategy.run(
    /Users/ron/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:951 run  **
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    /Users/rn/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    /Users/romin/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_replica
        return fn(*args, **kwargs)
    /Users/rin/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:1122 predict_step  **
        return self(x, training=False)
    /Users/rn/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:886 __call__
        self.name)
    /Users/rkin/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/keras/engine/input_spec.py:216 assert_input_compatibility
        ' but received input with shape ' + str(shape))

    ValueError: Input 0 of layer sequential_10 is incompatible with the layer: expected axis -1 of input shape to have value 1 but received input with shape [None, 256, 256, 3]

这是模型其余部分的代码:

file_list = []
class_list = []

DATADIR = "data"

# All the categories you want your elefante network to detect
CATEGORIES = ["cane", "cavallo", "elefante", "farfalla", "gallina",
          "gatto", "mucca", "pecora", "ragno", "scoiattolo"]

# The size of the images that your neural network will use
IMG_SIZE = 50

# Checking or all images in the data folder
for category in CATEGORIES :
    path = os.path.join(DATADIR, category)
    for img in os.listdir(path):
        img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)

training_data = []

def create_training_data():
    for category in CATEGORIES :
        path = os.path.join(DATADIR, category)
        class_num = CATEGORIES.index(category)
        for img in os.listdir(path):
            try :
                img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
                new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
                training_data.append([new_array, class_num])
            except Exception as e:
                pass

create_training_data()

random.shuffle(training_data)

X = [] #features
y = [] #labels

for features, label in training_data:
    X.append(features)
    y.append(label)

X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)

# Creating the files containing all the information about your model
pickle_out = open("X.pickle", "wb")
pickle.dump(X, pickle_out)
pickle_out.close()

pickle_out = open("y.pickle", "wb")
pickle.dump(y, pickle_out)
pickle_out.close()

pickle_in = open("X.pickle", "rb")
X = pickle.load(pickle_in)
y = np.array(y)

import tensorflow as tf 
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
import pickle
from keras.models import model_from_json
from keras.models import load_model
import matplotlib.pyplot as plt

# Opening the files about data
X = pickle.load(open("X.pickle", "rb"))
y = pickle.load(open("y.pickle", "rb"))

# normalizing data (a pixel goes from 0 to 255)
X = X/255.0

model = Sequential()
# 3 convolutional layers
model.add(Conv2D(32, (3, 3), input_shape = X.shape[1:]))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation("relu"))

model.add(Dense(128))
model.add(Activation("relu"))
model.add(Dense(10))
model.add(Activation("softmax"))

# Compiling the model using some basic parameters
model.compile(loss="sparse_categorical_crossentropy",
                optimizer="adam",
                metrics=["accuracy"])
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)

y = np.array(y)

history = model.fit(X, y, batch_size=32, epochs=4, validation_split=0.1)
model_json = model.to_json()
with open("model.json", "w") as json_file :
    json_file.write(model_json)

model.save_weights("model.h5")
print("Saved model to disk")

model.save('CNN.model')

# Printing a graph showing the accuracy changes during the training phase
print(history.history.keys())
plt.figure(1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')

共2个答案

匿名用户

我想你只是忘了应用你的def prepare(文件)。

你能试一下吗

model.predict(prepare(image))

这就是为什么在RGB和预期灰度之间存在不匹配的原因。 因为你加载它的方式,它是RGB,因为你的prepare函数没有应用。 应用后,它应该是一个灰度图像,它应该工作。

匿名用户

所以错误是很明显的。

expected axis -1 of input shape to have value 1 but received input with shape [None, 256, 256, 3]

错误指出,由于RGB图像,提供给模型的输入通道是3,但您的模型需要通道为1的图像。

这意味着您的模型期望一个grayscale图像,而您在预测时提供了一个rgb图像。

您应该提供具有[None,256,256,1]的映像,其中None代表batch_size

你能通过添加你的模型代码来确认这一点吗?

更新:

你刚刚更新了你的问题,所以在这里我可以看到你正在用灰度图像训练你的模型。

X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)

但我认为,当预测时,您正在使用RGB图像进行调用。