构建二进制搜索树并进行删除和有序遍历的Java程序
1 简介
在此程序中,我们需要创建一个二进制搜索树,从该树中删除一个节点,并通过使用有序遍历遍历该树来显示该树的节点。在有序遍历中,对于给定的节点,首先遍历左子节点,然后遍历根节点,然后遍历右子节点(Left-> Root-> Right)。
在二叉搜索树中,出现在根左侧的所有节点都将小于根节点,出现在右侧的节点将大于根节点。
插入:
- 如果新节点的值小于根节点,则它将被插入到左子树中。
- 如果新节点的值大于根节点,那么它将被插入到正确的子树中。
删除:
- 如果要删除的节点是叶节点,则该节点的父节点将指向null。例如。如果我们删除90,则父节点70将指向null。
- 如果要删除的节点有一个子节点,则子节点将成为父节点的子节点。例如。如果我们删除30,则剩下的30的子节点10将变成50的左子节点。
- 如果要删除的节点有两个子节点,则从该当前节点的右子树中找到具有最小值的节点(minNode)。当前节点将被其后继节点(minNode)取代。
2 算法思路
- 定义具有三个属性的Node类,即data,left和right。在此,左代表节点的左子节点,右代表节点的右子节点。
- 创建节点时,数据将传递到该节点的data属性,并且left和right都将设置为null。
- 定义另一个具有属性根的类。
- 根表示树的根节点,并将其初始化为null。
- 它检查root是否为空,这意味着树为空。新节点将成为树的根节点。
- 如果tree不为空,则它将新节点的值与根节点进行比较。如果新节点的值大于根,则新节点将插入到右子树中。否则,它将插入到左子树中。
- 如果要删除的节点的值小于根节点,请在左子树中搜索节点。否则,在右边的子树中搜索。
- 如果找到节点并且它没有子节点,则将节点设置为null。
- 如果节点有一个子节点,则子节点将占据该节点的位置。
- 如果节点有两个子节点,则从其右子树中找到一个最小值节点。此最小值节点将替换当前节点。
3 程序实现
/**
* 一点教程网: http://www.yiidian.com
*/
public class BinarySearchTree {
//Represent a node of binary tree
public static class Node{
int data;
Node left;
Node right;
public Node(int data){
//Assign data to the new node, set left and right children to null
this.data = data;
this.left = null;
this.right = null;
}
}
//Represent the root of binary tree
public Node root;
public BinarySearchTree(){
root = null;
}
//insert() will add new node to the binary search tree
public void insert(int data) {
//Create a new node
Node newNode = new Node(data);
//Check whether tree is empty
if(root == null){
root = newNode;
return;
}
else {
//current node point to root of the tree
Node current = root, parent = null;
while(true) {
//parent keep track of the parent node of current node.
parent = current;
//If data is less than current's data, node will be inserted to the left of tree
if(data < current.data) {
current = current.left;
if(current == null) {
parent.left = newNode;
return;
}
}
//If data is greater than current's data, node will be inserted to the right of tree
else {
current = current.right;
if(current == null) {
parent.right = newNode;
return;
}
}
}
}
}
//minNode() will find out the minimum node
public Node minNode(Node root) {
if (root.left != null)
return minNode(root.left);
else
return root;
}
//deleteNode() will delete the given node from the binary search tree
public Node deleteNode(Node node, int value) {
if(node == null){
return null;
}
else {
//value is less than node's data then, search the value in left subtree
if(value < node.data)
node.left = deleteNode(node.left, value);
//value is greater than node's data then, search the value in right subtree
else if(value > node.data)
node.right = deleteNode(node.right, value);
//If value is equal to node's data that is, we have found the node to be deleted
else {
//If node to be deleted has no child then, set the node to null
if(node.left == null && node.right == null)
node = null;
//If node to be deleted has only one right child
else if(node.left == null) {
node = node.right;
}
//If node to be deleted has only one left child
else if(node.right == null) {
node = node.left;
}
//If node to be deleted has two children node
else {
//then find the minimum node from right subtree
Node temp = minNode(node.right);
//Exchange the data between node and temp
node.data = temp.data;
//Delete the node duplicate node from right subtree
node.right = deleteNode(node.right, temp.data);
}
}
return node;
}
}
//inorder() will perform inorder traversal on binary search tree
public void inorderTraversal(Node node) {
//Check whether tree is empty
if(root == null){
System.out.println("Tree is empty");
return;
}
else {
if(node.left!= null)
inorderTraversal(node.left);
System.out.print(node.data + " ");
if(node.right!= null)
inorderTraversal(node.right);
}
}
public static void main(String[] args) {
BinarySearchTree bt = new BinarySearchTree();
//Add nodes to the binary tree
bt.insert(50);
bt.insert(30);
bt.insert(70);
bt.insert(60);
bt.insert(10);
bt.insert(90);
System.out.println("Binary search tree after insertion:");
//Displays the binary tree
bt.inorderTraversal(bt.root);
Node deletedNode = null;
//Deletes node 90 which has no child
deletedNode = bt.deleteNode(bt.root, 90);
System.out.println("\nBinary search tree after deleting node 90:");
bt.inorderTraversal(bt.root);
//Deletes node 30 which has one child
deletedNode = bt.deleteNode(bt.root, 30);
System.out.println("\nBinary search tree after deleting node 30:");
bt.inorderTraversal(bt.root);
//Deletes node 50 which has two children
deletedNode = bt.deleteNode(bt.root, 50);
System.out.println("\nBinary search tree after deleting node 50:");
bt.inorderTraversal(bt.root);
}
}
输出结果为:
Binary search tree after insertion:
10 30 50 60 70 90
Binary search tree after deleting node 90:
10 30 50 60 70
Binary search tree after deleting node 30:
10 50 60 70
Binary search tree after deleting node 50:
10 60 70
热门文章
优秀文章