pytorch 常用线性函数详解


本文向大家介绍pytorch 常用线性函数详解,包括了pytorch 常用线性函数详解的使用技巧和注意事项,需要的朋友参考一下

Pytorch的线性函数主要封装了Blas和Lapack,其用法和接口都与之类似。

常用的线性函数如下:

函数 功能
trace 对角线元素之和(矩阵的迹)
diag 对角线元素
triu/tril 矩阵的上三角/下三角,可指定偏移量
mm/bmm 矩阵乘法,batch的矩阵乘法
t 转置
dot/cross 内积/外积
inverse 求逆矩阵
svd 奇异值分解

注意:矩阵的转置会使存储空间不连续,需调用它的.contiguous方法转为连续。

例如:

import torch as t
b=a.t()
b.is_contiguous()
 
输出:False
 
b=b.contiguous()
b.is_contiguous()
 
输出:True

以上这篇pytorch 常用线性函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#yiidian.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。