python使用pyecharts库画地图数据可视化的实现
本文向大家介绍python使用pyecharts库画地图数据可视化的实现,包括了python使用pyecharts库画地图数据可视化的实现的使用技巧和注意事项,需要的朋友参考一下
python使用pyecharts库画地图数据可视化导库中国地图代码结果世界地图代码结果省级地图代码结果地级市地图代码结果
导库
from pyecharts import options as opts from pyecharts.charts import Map
中国地图
代码
data = [('湖北', 9074),('浙江', 661),('广东', 632),('河南', 493),('湖南', 463), ('安徽', 340),('江西', 333),('重庆', 275),('江苏', 236),('四川', 231), ('山东', 230),('北京', 191),('上海', 182),('福建', 159),('陕西', 116), ('广西', 111),('云南', 105),('河北', 104),('黑龙江', 95),('辽宁', 69), ('海南', 64),('新疆', 21),('内蒙古', 21),('宁夏', 28),('青海', 11),('甘肃', 40),('西藏', 1), ('贵州', 38),('山西', 56),('吉林', 23),('台湾', 10),('天津', 48),('香港', 14),('澳门', 8)] def map_china() -> Map: c = ( Map() .add(series_name="确诊病例", data_pair=data, maptype="china",zoom = 1,center=[105,38]) .set_global_opts( title_opts=opts.TitleOpts(title="疫情地图"), visualmap_opts=opts.VisualMapOpts(max_=9999,is_piecewise=True, pieces=[{"max": 9, "min": 0, "label": "0-9","color":"#FFE4E1"}, {"max": 99, "min": 10, "label": "10-99","color":"#FF7F50"}, {"max": 499, "min": 100, "label": "100-499","color":"#F08080"}, {"max": 999, "min": 500, "label": "500-999","color":"#CD5C5C"}, {"max": 9999, "min": 1000, "label": ">=1000", "color":"#8B0000"}] ) ) ) return c d_map = map_china() d_map.render_notebook()
结果
世界地图代码
data = [['China', 14489],['Japan', 20],['Thailand', 19],['Singapore', 18],['Korea', 15], ['Australia', 12],['Germany', 10],['Malaysia', 8],['United States', 8],['Vietnam', 7],['France', 6], ['United Arab Emirates', 5],['Canada', 4],['Italy', 2],['India', 2], ['United Kingdom', 2],['Philippines', 2],['Russia', 2],['Sri Lanka', 1],['Cambodia', 1], ['Nepal', 1],['Sweden', 1],['Finland', 1],['Spain', 1]] def map_world() -> Map: c = ( Map() .add("确诊病例", data, maptype="world",zoom = 1) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( title_opts=opts.TitleOpts(title="疫情地图"), visualmap_opts=opts.VisualMapOpts(max_=100,is_piecewise=False), ) ) return c d_map = map_world() d_map.render_notebook()
结果
省级地图代码
data = [['昆明市', 31],['玉溪市', 11],['楚雄彝族自治州', 2],['西双版纳傣族自治州', 12],['普洱市', 4], ['昭通市', 8],['曲靖市', 5],['迪庆藏族自治州', 0],['丽江市', 7],['临沧市', 1],['保山市', 8], ['怒江傈僳族自治州', 0],['大理白族自治州', 7],['德宏傣族景颇族自治州', 4],['红河哈尼族彝族自治州', 5], ['文山壮族苗族自治州', 0]] def map_yunnan() -> Map: c = ( Map() .add("确诊病例", data, "云南",zoom = 1) .set_global_opts( title_opts=opts.TitleOpts(title="云南疫情地图"), visualmap_opts=opts.VisualMapOpts(max_=31,is_piecewise=True, pieces=[{"max": 0, "min": 0, "label": "0","color":"#FFFFFF"}, {"max": 9, "min": 1, "label": "0-9","color":"#FFE4E1"}, {"max": 99, "min": 10, "label": "10-99","color":"#FF7F50"}, {"max": 499, "min": 100, "label": "100-499","color":"#F08080"}, {"max": 999, "min": 500, "label": "500-999","color":"#CD5C5C"}, {"max": 9999, "min": 1000, "label": ">=1000", "color":"#8B0000"}] ), ) ) return c d_map = map_yunnan() d_map.render_notebook()
结果
地级市地图代码
data = [['楚雄市', 31],['玉溪市', 11],['楚雄彝族自治州', 2],['西双版纳傣族自治州', 12],['普洱市', 4], ['昭通市', 8],['曲靖市', 5],['迪庆藏族自治州', 0],['丽江市', 7],['临沧市', 1],['保山市', 8], ['怒江傈僳族自治州', 0],['大理白族自治州', 7],['德宏傣族景颇族自治州', 4],['红河哈尼族彝族自治州', 5], ['文山壮族苗族自治州', 0]] def map_yunnan() -> Map: c = ( Map() .add("确诊病例", data_pair=data, maptype="楚雄彝族自治州",zoom = 1) .set_global_opts( title_opts=opts.TitleOpts(title="楚雄地图"), visualmap_opts=opts.VisualMapOpts(max_=31,is_piecewise=False), ) ) return c d_map = map_yunnan() d_map.render_notebook()
结果
到此这篇关于python使用pyecharts库画地图数据可视化的实现的文章就介绍到这了,更多相关python pyecharts地图内容请搜索呐喊教程以前的文章或继续浏览下面的相关文章希望大家以后多多支持呐喊教程!
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#yiidian.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。