tensorflow多维张量计算实例
本文向大家介绍tensorflow多维张量计算实例,包括了tensorflow多维张量计算实例的使用技巧和注意事项,需要的朋友参考一下
两个三维矩阵的乘法怎样计算呢?我通过实验发现,tensorflow把前面的维度当成是batch,对最后两维进行普通的矩阵乘法。也就是说,最后两维之前的维度,都需要相同。
首先计算shape为(2, 2, 3)乘以shape为(2, 3, 2)的张量。
import tensorflow as tf import numpy as np a = tf.constant(np.arange(1, 13, dtype=np.float32), shape=[2, 2, 3]) b = tf.constant(np.arange(1, 13, dtype=np.float32), shape=[2, 3, 2]) c = tf.matmul(a, b) # c = tf.matmul(a, b) sess = tf.Session() print("a*b = ", sess.run(c)) c1 = tf.matmul(a[0, :, :], b[0, :, :]) print("a[1]*b[1] = ", sess.run(c1))
运行结果:
计算结果表明,两个三维矩阵相乘,对应位置的最后两个维度的矩阵乘法。
再验证高维的张量乘法:
import tensorflow as tf import numpy as np a = tf.constant(np.arange(1, 36, dtype=np.float32), shape=[3, 2, 2, 3]) b = tf.constant(np.arange(1, 36, dtype=np.float32), shape=[3, 2, 3, 2]) c = tf.matmul(a, b) # c = tf.matmul(a, b) sess = tf.Session() print("a*b = ", sess.run(c)) c1 = tf.matmul(a[0, 0, :, :], b[0, 0, :, :]) print("a[1]*b[1] = ", sess.run(c1))
运行结果:
以上这篇tensorflow多维张量计算实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#yiidian.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。