Java实现的微信图片处理工具类【裁剪,合并,等比例缩放等】
本文向大家介绍Java实现的微信图片处理工具类【裁剪,合并,等比例缩放等】,包括了Java实现的微信图片处理工具类【裁剪,合并,等比例缩放等】的使用技巧和注意事项,需要的朋友参考一下
本文实例讲述了Java实现的微信图片处理工具类。分享给大家供大家参考,具体如下:
现在 外面核心,图片文章比较少,看了拷贝代码,而用不了,用相应jar包处理,很多等比例缩放,达不到 想要的给予的期望:本工具类,是之前做微信打印机写的 基于java自带的类,基于rgb。
package com.zjpz.util; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.RenderingHints; import java.awt.geom.AffineTransform; import java.awt.image.BufferedImage; import java.awt.image.ColorModel; import java.awt.image.WritableRaster; import java.io.File; import java.io.IOException; import javax.imageio.ImageIO; import org.slf4j.Logger; import org.slf4j.LoggerFactory; /** * 微信图片处理工具 * * @author zhuang.y * */ public class PictureTool { protected static Logger logger = LoggerFactory.getLogger(PictureTool.class); public static void main(String[] args) throws IOException { File fileOne = new File("c:\\1.jpg"); BufferedImage imageFirst = ImageIO.read(fileOne); int border = 0; imageFirst =crop(imageFirst,0,10,297,300); File outFile = new File("d:\\2.jpg"); ImageIO.write(imageFirst, "jpg", outFile);// 写图片 } /** * 纵向合图的x坐标像素 */ private final static int y_width = 645; /** * 标准图片的y坐标像素,920,是一般照片,1099是邮票照片 */ private final static int y_height = 920; /** * 裁剪x坐标缩进像素 */ private final static int x_retract = 50; /** * 裁剪y坐标缩进像素 */ private final static int y_retract = 50; /** * 系统默认图片边框为20 */ public final static int BORDER = 20; /** * 横向合成图片 */ public static void xPic(String first, String second, String out) { try { /* 1 读取第一张图片 */ File fileOne = new File(first); BufferedImage imageFirst = ImageIO.read(fileOne); int width = imageFirst.getWidth();// 图片宽度 int height = imageFirst.getHeight();// 图片高度 int[] imageArrayFirst = new int[width * height];// 从图片中读取RGB imageArrayFirst = imageFirst.getRGB(0, 0, width, height, imageArrayFirst, 0, width); /* 1 对第二张图片做相同的处理 */ File fileTwo = new File(second); BufferedImage imageSecond = ImageIO.read(fileTwo); int widthTwo = imageSecond.getWidth();// 图片宽度 int heightTwo = imageSecond.getHeight();// 图片高度 int[] imageArraySecond = new int[widthTwo * heightTwo]; imageArraySecond = imageSecond.getRGB(0, 0, widthTwo, heightTwo, imageArraySecond, 0, widthTwo); int h = height; if (height < heightTwo) { h = heightTwo; } // 生成新图片 BufferedImage imageResult = new BufferedImage(width + widthTwo, h, BufferedImage.TYPE_INT_RGB); imageResult.setRGB(0, 0, width, height, imageArrayFirst, 0, width);// 设置左半部分的RGB imageResult.setRGB(width, 0, widthTwo, heightTwo, imageArraySecond, 0, widthTwo);// 设置右半部分的RGB File outFile = new File(out); ImageIO.write(imageResult, "jpg", outFile);// 写图片 } catch (Exception e) { logger.error("横向合成图片出错....", e); } } /** * 纵向合成图片 * * @param first * 放上面的图片路径 * @param second * 放下面的图片路径 * @param out * 文件输出目录 * @param border * 图片预留边框 */ public static boolean yPic(String first, String second, String out, int border) { boolean isOk = true; try { /* 1 读取第一张图片 */ File fileOne = new File(first); BufferedImage imageFirst = ImageIO.read(fileOne); int width = imageFirst.getWidth();// 图片宽度 int height = imageFirst.getHeight();// 图片高度 /* 2对第二张图片做相同的处理 */ File fileTwo = new File(second); BufferedImage imageSecond = ImageIO.read(fileTwo); int widthTwo = imageSecond.getWidth();// 图片宽度 int heightTwo = imageSecond.getHeight();// 图片高度 /* 1 读取第一张图片begin */ int t_height = y_height - heightTwo; // 图片是横图,逆时针旋转90度再等比缩放 if (width > height) { imageFirst = rotateImageLeft90(imageFirst); } // 等比缩放 imageFirst = resize(imageFirst, y_width, t_height); // 缩放后图片的大小 width = imageFirst.getWidth();// 图片宽度 height = imageFirst.getHeight();// 图片高度 // 等比缩放后,图片还是太大,裁剪图片 boolean a_w, a_h = false; if ((a_w = (width > y_width)) || (a_h = (height > t_height))) { // 起始位置x,y坐标 int s_w = 0, s_h = 0; // 裁剪x坐标时,缩进属性x_retract if (a_w) { int temp = width - y_width; if (temp > x_retract) { temp = x_retract; } else { temp = 0; } s_w = s_w + temp; } // 裁剪y坐标时,缩进属性y_retract if (a_h) { int temp = height - t_height; if (temp > y_retract) { temp = y_retract; } else { temp = 0; } s_h = s_h + temp; } imageFirst = crop(imageFirst, s_w, s_h, y_width, t_height); width = imageFirst.getWidth(); height = imageFirst.getHeight(); } int[] imageArrayFirst = new int[(width - border) * height];// 从图片中读取RGB imageArrayFirst = imageFirst.getRGB(border, 0, (width - border), height, imageArrayFirst, 0, (width - border)); /* 2对第二张图片做相同的处理begin */ int[] imageArraySecond = new int[widthTwo * heightTwo]; imageArraySecond = imageSecond.getRGB(0, 0, widthTwo, heightTwo, imageArraySecond, 0, widthTwo); int w = width; if (width < widthTwo) { w = widthTwo; } // 图片高度 int h = height + heightTwo; // 生成新图片 BufferedImage imageResult = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB); // 解决黑色背景,默认的TYPE_INT_RGB都是0,都是黑色的 Graphics2D g = (Graphics2D) imageResult.createGraphics(); g.setColor(Color.WHITE); g.fillRect(0, 0, w, h);// 填充整个屏幕 g.dispose(); // 留边框 imageResult.setRGB(border, 0, (width - border * 2), height, imageArrayFirst, 0, (width - border));// 设置左半部分的RGB imageResult.setRGB(0, height, widthTwo, heightTwo, imageArraySecond, 0, widthTwo);// 设置右半部分的RGB File outFile = new File(out); ImageIO.write(imageResult, "jpg", outFile);// 写图片 } catch (Exception e) { logger.error("纵向合成图片失败....", e); isOk = false; } return isOk; } /** * 全图打印,图片缩放、旋转处理 * * @param source * 待处理的图片 * @param out * 处理后文件输出目录 * @param border * 图片预留边框 */ public static boolean maigaoPic(String source, String out, int border) { boolean isOk = true; try { /* 1 读取第一张图片 */ File fileOne = new File(source); BufferedImage imageFirst = ImageIO.read(fileOne); int width = imageFirst.getWidth();// 图片宽度 int height = imageFirst.getHeight();// 图片高度 // 图片是横图,逆时针旋转90度再等比缩放 if (width > height) { imageFirst = rotateImageLeft90(imageFirst); } // 等比缩放 imageFirst = resize(imageFirst, y_width, y_height); // 缩放后图片的大小 width = imageFirst.getWidth();// 图片宽度 height = imageFirst.getHeight();// 图片高度 // 等比缩放后,图片还是太大,裁剪图片 boolean a_w, a_h = false; if ((a_w = (width > y_width)) || (a_h = (height > y_height))) { // 起始位置x,y坐标 int s_w = 0, s_h = 0; // 裁剪x坐标时,缩进属性x_retract if (a_w) { int temp = width - y_width; if (temp > x_retract) { temp = x_retract; } else { temp = 0; } s_w = s_w + temp; } // 裁剪y坐标时,缩进属性y_retract if (a_h) { int temp = height - y_height; if (temp > y_retract) { temp = y_retract; } else { temp = 0; } s_h = s_h + temp; } imageFirst = crop(imageFirst, s_w, s_h, y_width, y_height); width = imageFirst.getWidth(); height = imageFirst.getHeight(); } int[] imageArrayFirst = new int[(width - border) * height];// 从图片中读取RGB imageArrayFirst = imageFirst.getRGB(border, 0, (width - border), height, imageArrayFirst, 0, (width - border)); // 生成新图片 BufferedImage imageResult = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); // 解决黑色背景,默认的TYPE_INT_RGB都是0,都是黑色的 Graphics2D g = (Graphics2D) imageResult.createGraphics(); g.setColor(Color.WHITE); g.fillRect(0, 0, width, height);// 填充整个屏幕 g.dispose(); // 留边框 imageResult.setRGB(border, 0, (width - border * 2), height, imageArrayFirst, 0, (width - border));// 设置左半部分的RGB File outFile = new File(out); ImageIO.write(imageResult, "jpg", outFile);// 写图片 } catch (IOException e) { logger.error("全图打印,图片缩放、旋转处理失败....", e); isOk = false; } return isOk; } /** * 实现图像的等比缩放 * * @param source * 待处理的图片流 * @param targetW * 宽度 * @param targetH * 高度 * @return */ public static BufferedImage resize(BufferedImage source, int targetW, int targetH) { int width = source.getWidth();// 图片宽度 int height = source.getHeight();// 图片高度 return zoomInImage(source, targetW, targetH); // 图片宽高都太小时,强制放大图片 /* if (width < targetW && height < targetH) { return zoomInImage(source, targetW, targetH); } else if ((width < targetW && width == height) || (height < targetH && width == height)) { return zoomInImage(source, targetW, targetH); } return null; */ } /** * 按比例裁剪图片 * * @param source * 待处理的图片流 * @param startX * 开始x坐标 * @param startY * 开始y坐标 * @param endX * 结束x坐标 * @param endY * 结束y坐标 * @return */ public static BufferedImage crop(BufferedImage source, int startX, int startY, int endX, int endY) { int width = source.getWidth(); int height = source.getHeight(); if (startX <= -1) { startX = 0; } if (startY <= -1) { startY = 0; } if (endX <= -1) { endX = width - 1; } if (endY <= -1) { endY = height - 1; } BufferedImage result = new BufferedImage(endX, endY , source.getType()); for (int y = startY; y < endY+startY; y++) { for (int x = startX; x < endX+startX; x++) { int rgb = source.getRGB(x, y); result.setRGB(x - startX, y - startY, rgb); } } return result; } /** * 旋转图片为指定角度 * * @param bufferedimage * 目标图像 * @param degree * 旋转角度 * @return */ public static BufferedImage rotateImage(final BufferedImage bufferedimage, final int degree) { int w = bufferedimage.getWidth(); int h = bufferedimage.getHeight(); int type = bufferedimage.getColorModel().getTransparency(); BufferedImage img; Graphics2D graphics2d; (graphics2d = (img = new BufferedImage(h, w, type)).createGraphics()).setRenderingHint( RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); graphics2d.rotate(Math.toRadians(degree), w / 2, h / 2 + (w > h ? (w - h) / 2 : (h - w) / 2)); graphics2d.drawImage(bufferedimage, 0, 0, null); graphics2d.dispose(); return img; } /** * 图片左转90度 * * @param bufferedimage * @return */ public static BufferedImage rotateImageLeft90(BufferedImage bufferedimage) { int w = bufferedimage.getWidth(); int h = bufferedimage.getHeight(); int type = bufferedimage.getColorModel().getTransparency(); BufferedImage img; Graphics2D graphics2d; (graphics2d = (img = new BufferedImage(h, w, type)).createGraphics()).setRenderingHint( RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); graphics2d.rotate(Math.toRadians(270), w / 2, h / 2 + (w - h) / 2); graphics2d.drawImage(bufferedimage, 0, 0, null); graphics2d.dispose(); return img; } /** * 图片右转90度 * * @param bufferedimage * @return */ public static BufferedImage rotateImageRight90(BufferedImage bufferedimage) { int w = bufferedimage.getWidth(); int h = bufferedimage.getHeight(); int type = bufferedimage.getColorModel().getTransparency(); BufferedImage img; Graphics2D graphics2d; (graphics2d = (img = new BufferedImage(h, w, type)).createGraphics()).setRenderingHint( RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); graphics2d.rotate(Math.toRadians(90), w / 2 - (w - h) / 2, h / 2); graphics2d.drawImage(bufferedimage, 0, 0, null); graphics2d.dispose(); return img; } // 对转 public File rotateImageOppo(File file) throws Exception { BufferedImage bufferedimage = ImageIO.read(file); int w = bufferedimage.getWidth(); int h = bufferedimage.getHeight(); int type = bufferedimage.getColorModel().getTransparency(); BufferedImage img; Graphics2D graphics2d; (graphics2d = (img = new BufferedImage(w, h, type)).createGraphics()).setRenderingHint( RenderingHints.KEY_INTERPOLATION, RenderingHints.VALUE_INTERPOLATION_BILINEAR); graphics2d.rotate(Math.toRadians(180), w / 2, h / 2); graphics2d.drawImage(bufferedimage, 0, 0, null); graphics2d.dispose(); ImageIO.write(img, "jpg", file); return file; } /*** * 图片镜像处理 * * @param file * @param FX * 0 为上下反转 1 为左右反转 * @return */ public void imageMisro(File file, int FX) { try { BufferedImage bufferedimage = ImageIO.read(file); int w = bufferedimage.getWidth(); int h = bufferedimage.getHeight(); int[][] datas = new int[w][h]; for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { datas[j][i] = bufferedimage.getRGB(j, i); } } int[][] tmps = new int[w][h]; if (FX == 0) { for (int i = 0, a = h - 1; i < h; i++, a--) { for (int j = 0; j < w; j++) { tmps[j][a] = datas[j][i]; } } } else if (FX == 1) { for (int i = 0; i < h; i++) { for (int j = 0, b = w - 1; j < w; j++, b--) { tmps[b][i] = datas[j][i]; } } } for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { bufferedimage.setRGB(j, i, tmps[j][i]); } } ImageIO.write(bufferedimage, "jpg", file); } catch (Exception e) { e.printStackTrace(); } } /** * 对图片进行强制放大或缩小 * * @param originalImage * 原始图片 * @return */ public static BufferedImage zoomInImage(BufferedImage originalImage, int width, int height) { BufferedImage newImage = new BufferedImage(width, height, originalImage.getType()); Graphics g = newImage.getGraphics(); g.drawImage(originalImage, 0, 0, width, height, null); g.dispose(); return newImage; } /** * 简易图片识别原理 * * @param img * 图片路径 */ public static void discernImg(String img) { try { File fileOne = new File(img); BufferedImage bi = ImageIO.read(fileOne); // 获取图像的宽度和高度 int width = bi.getWidth(); int height = bi.getHeight(); // 扫描图片 for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) {// 行扫描 int dip = bi.getRGB(j, i); if (dip == -1) System.out.print(" "); else System.out.print("♦"); } System.out.println();// 换行 } } catch (Exception e) { logger.error("图片识别出错", e); } } }
更多java相关内容感兴趣的读者可查看本站专题:《Java图片操作技巧汇总》、《java日期与时间操作技巧汇总》、《Java操作DOM节点技巧总结》、《Java文件与目录操作技巧汇总》及《Java数据结构与算法教程》。
希望本文所述对大家java程序设计有所帮助。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#yiidian.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。